Relaxed synchronization support of universal filtered multi-carrier including autonomous timing advance

F. Schaich, T. Wild
{"title":"Relaxed synchronization support of universal filtered multi-carrier including autonomous timing advance","authors":"F. Schaich, T. Wild","doi":"10.1109/ISWCS.2014.6933347","DOIUrl":null,"url":null,"abstract":"5G wireless systems may benefit by waveforms supporting relaxed synchronization, as this enables reduced energy consumption, better support of low-end devices and reduction of signaling overhead. In this paper we evaluate UFMC (Universal Filtered Multi-Carrier), also known as UF-OFDM (universal filtered OFDM) - the recently appeared waveform option for 5G - with respect to its performance in scenarios with relaxed synchronization. Both carrier frequency offset, e.g. due to low-cost oscillators used in low-end devices, and relative fractional delay, e.g. due to the absence of an energy consuming closed-loop ranging mechanism, is considered. We introduce a concept called autonomous timing advance (ATA) improving the overall system performance. With ATA the system can operate purely based on open-loop synchronization. For comparing UFMC with CP-OFDM, we evaluate the mean squared error (MSE) in the receiver after frequency conversion. With applying a limit regarding the tolerable amount of distortion, we calculate the supported link distance for a system applying either UFMC or CP-OFDM for LTE-like settings. With applying UFMC, higher link distances are supported than with CP-OFDM, if the system applies open-loop synchronization.","PeriodicalId":431852,"journal":{"name":"2014 11th International Symposium on Wireless Communications Systems (ISWCS)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"71","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 11th International Symposium on Wireless Communications Systems (ISWCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISWCS.2014.6933347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 71

Abstract

5G wireless systems may benefit by waveforms supporting relaxed synchronization, as this enables reduced energy consumption, better support of low-end devices and reduction of signaling overhead. In this paper we evaluate UFMC (Universal Filtered Multi-Carrier), also known as UF-OFDM (universal filtered OFDM) - the recently appeared waveform option for 5G - with respect to its performance in scenarios with relaxed synchronization. Both carrier frequency offset, e.g. due to low-cost oscillators used in low-end devices, and relative fractional delay, e.g. due to the absence of an energy consuming closed-loop ranging mechanism, is considered. We introduce a concept called autonomous timing advance (ATA) improving the overall system performance. With ATA the system can operate purely based on open-loop synchronization. For comparing UFMC with CP-OFDM, we evaluate the mean squared error (MSE) in the receiver after frequency conversion. With applying a limit regarding the tolerable amount of distortion, we calculate the supported link distance for a system applying either UFMC or CP-OFDM for LTE-like settings. With applying UFMC, higher link distances are supported than with CP-OFDM, if the system applies open-loop synchronization.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通用滤波多载波的宽松同步支持,包括自主时序推进
5G无线系统可能受益于支持宽松同步的波形,因为这可以降低能耗,更好地支持低端设备并减少信令开销。在本文中,我们评估了UFMC(通用滤波多载波),也称为UF-OFDM(通用滤波OFDM)——最近出现的5G波形选项——在宽松同步场景下的性能。考虑了载波频率偏移,例如由于在低端设备中使用的低成本振荡器,以及相对分数延迟,例如由于缺乏消耗能量的闭环测距机制。我们引入了一个称为自动时序提前(ATA)的概念,以提高系统的整体性能。使用ATA,系统可以完全基于开环同步运行。为了比较UFMC和CP-OFDM,我们评估了变频后接收机的均方误差(MSE)。通过对可容忍的失真量施加限制,我们计算了对类似lte的设置应用UFMC或CP-OFDM的系统所支持的链路距离。如果系统采用开环同步,采用UFMC可以支持比CP-OFDM更高的链路距离。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
QoS aware pre-emption: A new proposition for LTE downlink schedulers Residual energy-based transmission schemes for event reporting wireless sensor networks Fast-convolution implementation of linear equalization based multiantenna detection schemes Inter-band carrier aggregation in heterogeneous networks: Design and assessment Efficient use of random neural networks for cognitive radio system in LTE-UL
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1