A fast block-sorting algorithm for lossless data compression

Dianne M Schindler
{"title":"A fast block-sorting algorithm for lossless data compression","authors":"Dianne M Schindler","doi":"10.1109/DCC.1997.582137","DOIUrl":null,"url":null,"abstract":"Summary form only given. Introduces a new transformation for block-sorting data compression methods. The transformation is similar to the one presented by Burrows and Wheeler, but avoids the drawbacks of uncertain runtime and low performance with large blocks. The cost is a small compression loss and a slower back transformation. In addition to that it is well suited for hardware implementation. Typical applications include real-time data recording, fast communication lines, on the fly compression and any other task requiring high throughput. The difference between this transformation and the original block-sort transformation is that the original transformation sorts on unlimited context, whereas this transformation sorts on limited context (typically a few bytes) and uses the position in the input block to determine the sort order in the case of equal contexts.","PeriodicalId":403990,"journal":{"name":"Proceedings DCC '97. Data Compression Conference","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1997-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"95","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings DCC '97. Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.1997.582137","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 95

Abstract

Summary form only given. Introduces a new transformation for block-sorting data compression methods. The transformation is similar to the one presented by Burrows and Wheeler, but avoids the drawbacks of uncertain runtime and low performance with large blocks. The cost is a small compression loss and a slower back transformation. In addition to that it is well suited for hardware implementation. Typical applications include real-time data recording, fast communication lines, on the fly compression and any other task requiring high throughput. The difference between this transformation and the original block-sort transformation is that the original transformation sorts on unlimited context, whereas this transformation sorts on limited context (typically a few bytes) and uses the position in the input block to determine the sort order in the case of equal contexts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于无损数据压缩的快速块排序算法
只提供摘要形式。介绍了一种新的块排序数据压缩方法的转换。这种转换类似于Burrows和Wheeler提出的转换,但避免了运行时不确定和大块时性能低下的缺点。代价是压缩损失小,反向变换速度慢。除此之外,它还非常适合硬件实现。典型的应用包括实时数据记录、快速通信线路、动态压缩和任何其他需要高吞吐量的任务。此转换与原始块排序转换之间的区别在于,原始转换对无限上下文进行排序,而此转换对有限上下文(通常是几个字节)进行排序,并且在相等上下文的情况下使用输入块中的位置来确定排序顺序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Robust image coding with perceptual-based scalability Image coding based on mixture modeling of wavelet coefficients and a fast estimation-quantization framework Region-based video coding with embedded zero-trees Progressive Ziv-Lempel encoding of synthetic images Compressing address trace data for cache simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1