Fisher Information Neural Estimation

Tran Trong Duy, Ly V. Nguyen, V. Nguyen, N. Trung, K. Abed-Meraim
{"title":"Fisher Information Neural Estimation","authors":"Tran Trong Duy, Ly V. Nguyen, V. Nguyen, N. Trung, K. Abed-Meraim","doi":"10.23919/eusipco55093.2022.9909530","DOIUrl":null,"url":null,"abstract":"Fisher information is a fundamental quantity in information theory and signal processing. A direct analytical computation of the Fisher information is often infeasible or intractable due to the lack or sophistication of statistical models. In this paper, we propose a Fisher Information Neural Estimator (FINE) which is computationally efficient, highly accurate, and applicable for both cases of deterministic and random parame-ters. The proposed method solely depends on measured data and does not require knowledge or an estimate of the probability density function and is therefore universally applicable. We validate our approach using some experiments and compare with existing works. Numerical results show the high efficacy and low-computational complexity of the proposed estimation approach.","PeriodicalId":231263,"journal":{"name":"2022 30th European Signal Processing Conference (EUSIPCO)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 30th European Signal Processing Conference (EUSIPCO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/eusipco55093.2022.9909530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Fisher information is a fundamental quantity in information theory and signal processing. A direct analytical computation of the Fisher information is often infeasible or intractable due to the lack or sophistication of statistical models. In this paper, we propose a Fisher Information Neural Estimator (FINE) which is computationally efficient, highly accurate, and applicable for both cases of deterministic and random parame-ters. The proposed method solely depends on measured data and does not require knowledge or an estimate of the probability density function and is therefore universally applicable. We validate our approach using some experiments and compare with existing works. Numerical results show the high efficacy and low-computational complexity of the proposed estimation approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fisher信息神经估计
费雪信息是信息论和信号处理中的一个基本量。由于缺乏或复杂的统计模型,对费雪信息的直接解析计算往往是不可行的或难以处理的。本文提出了一种计算效率高、精度高的Fisher信息神经估计器(FINE),它既适用于确定性参数,也适用于随机参数。所提出的方法完全依赖于测量数据,不需要知识或估计概率密度函数,因此是普遍适用的。我们通过一些实验验证了我们的方法,并与现有的工作进行了比较。数值结果表明,该方法具有较高的估计效率和较低的计算复杂度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessing Bias in Face Image Quality Assessment Electrically evoked auditory steady state response detection in cochlear implant recipients using a system identification approach Uncovering cortical layers with multi-exponential analysis: a region of interest study Phaseless Passive Synthetic Aperture Imaging with Regularized Wirtinger Flow The faster proximal algorithm, the better unfolded deep learning architecture ? The study case of image denoising
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1