Real-time and robust grasping detection

Chih-Fan Chen, Ryan P. Spicer, Rhys Yahata, M. Bolas, Evan A. Suma
{"title":"Real-time and robust grasping detection","authors":"Chih-Fan Chen, Ryan P. Spicer, Rhys Yahata, M. Bolas, Evan A. Suma","doi":"10.1145/2659766.2661224","DOIUrl":null,"url":null,"abstract":"Depth-based gesture cameras provide a promising and novel way to interface with computers. Nevertheless, this type of interaction remains challenging due to the complexity of finger interactions and the under large viewpoint variations. Existing middleware such as Intel Perceptual Computing SDK (PCSDK) or SoftKinetic IISU can provide abundant hand tracking and gesture information. However, the data is too noisy (Fig. 1, left) for consistent and reliable use in our application. In this work, we present a filtering approach that combines several features from PCSDK to achieve more stable hand openness and supports grasping interactions in virtual environments. Support vector machine (SVM), a machine learning method, is used to achieve better accuracy in a single frame, and Markov Random Field (MRF), a probability theory, is used to stabilize and smooth the sequential output. Our experimental results verify the effectiveness and the robustness of our method.","PeriodicalId":274675,"journal":{"name":"Proceedings of the 2nd ACM symposium on Spatial user interaction","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2nd ACM symposium on Spatial user interaction","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2659766.2661224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Depth-based gesture cameras provide a promising and novel way to interface with computers. Nevertheless, this type of interaction remains challenging due to the complexity of finger interactions and the under large viewpoint variations. Existing middleware such as Intel Perceptual Computing SDK (PCSDK) or SoftKinetic IISU can provide abundant hand tracking and gesture information. However, the data is too noisy (Fig. 1, left) for consistent and reliable use in our application. In this work, we present a filtering approach that combines several features from PCSDK to achieve more stable hand openness and supports grasping interactions in virtual environments. Support vector machine (SVM), a machine learning method, is used to achieve better accuracy in a single frame, and Markov Random Field (MRF), a probability theory, is used to stabilize and smooth the sequential output. Our experimental results verify the effectiveness and the robustness of our method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
实时鲁棒抓取检测
基于深度的手势相机提供了一种与计算机交互的新方法。然而,由于手指相互作用的复杂性和较小的视点变化,这种类型的交互仍然具有挑战性。现有的中间件如Intel Perceptual Computing SDK (PCSDK)或SoftKinetic IISU可以提供丰富的手部跟踪和手势信息。然而,数据噪声太大(图1,左),无法在我们的应用程序中一致和可靠地使用。在这项工作中,我们提出了一种过滤方法,该方法结合了PCSDK的几个特性,以实现更稳定的手部开放,并支持虚拟环境中的抓取交互。使用机器学习方法支持向量机(SVM)在单帧中获得更好的精度,使用概率论中的马尔可夫随机场(MRF)来稳定和平滑顺序输出。实验结果验证了该方法的有效性和鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Designing the user in user interfaces Session details: Hybrid interaction spaces Ethereal planes: a design framework for 2D information space in 3D mixed reality environments Investigating inertial measurement units for spatial awareness in multi-surface environments Augmenting views on large format displays with tablets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1