{"title":"Noise-adjusted sparsity-preserving-based dimensionality reduction for hyperspectral image classification","authors":"N. Ly, Q. Du, J. Fowler","doi":"10.1109/PPRS.2012.6398318","DOIUrl":null,"url":null,"abstract":"In this paper, we investigate the performance of a sparsity-preserving graph embedding based approach, called l1 graph, in hyperspectral image dimensionality reduction (DR), and propose noise-adjusted sparsity-preserving (NASP) based DR when training samples are unavailable. In conjunction with the state-of-the-art hyperspectral image classifier, support vector machine with composite kernels (SVM-CK), the experimental study show that NASP can significantly improve the classification accuracy, compared to other widely used DR methods.","PeriodicalId":139043,"journal":{"name":"7th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)","volume":"128 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"7th IAPR Workshop on Pattern Recognition in Remote Sensing (PRRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PPRS.2012.6398318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
In this paper, we investigate the performance of a sparsity-preserving graph embedding based approach, called l1 graph, in hyperspectral image dimensionality reduction (DR), and propose noise-adjusted sparsity-preserving (NASP) based DR when training samples are unavailable. In conjunction with the state-of-the-art hyperspectral image classifier, support vector machine with composite kernels (SVM-CK), the experimental study show that NASP can significantly improve the classification accuracy, compared to other widely used DR methods.