A Multilingual Approach for Unsupervised Search Task Identification

Luis Lugo, Jose G. Moreno, G. Hubert
{"title":"A Multilingual Approach for Unsupervised Search Task Identification","authors":"Luis Lugo, Jose G. Moreno, G. Hubert","doi":"10.1145/3397271.3401258","DOIUrl":null,"url":null,"abstract":"Users convert their information needs to search queries, which are then run on available search engines. Query logs registered by search engines enable the automatic identification of the search tasks that users perform to fulfill their information needs. Search engine logs contain queries in multiple languages, but most existing methods for search task identification are not multilingual. Some methods rely on search context training of custom embeddings or external indexed collections that support a single language, making it challenging to support the multiple languages of queries run in search engines. Other methods depend on supervised components and user identifiers to model search tasks. The supervised components require labeled collections, which are difficult and costly to get in multiple languages. Also, the need for user identifiers renders these methods unfeasible in user agnostic scenarios. Hence, we propose an unsupervised multilingual approach for search task identification. The proposed approach is user agnostic, enabling its use in both user-independent and personalized scenarios. Furthermore, the multilingual query representation enables us to address the existing trade-off when mapping new queries to the identified search tasks.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397271.3401258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Users convert their information needs to search queries, which are then run on available search engines. Query logs registered by search engines enable the automatic identification of the search tasks that users perform to fulfill their information needs. Search engine logs contain queries in multiple languages, but most existing methods for search task identification are not multilingual. Some methods rely on search context training of custom embeddings or external indexed collections that support a single language, making it challenging to support the multiple languages of queries run in search engines. Other methods depend on supervised components and user identifiers to model search tasks. The supervised components require labeled collections, which are difficult and costly to get in multiple languages. Also, the need for user identifiers renders these methods unfeasible in user agnostic scenarios. Hence, we propose an unsupervised multilingual approach for search task identification. The proposed approach is user agnostic, enabling its use in both user-independent and personalized scenarios. Furthermore, the multilingual query representation enables us to address the existing trade-off when mapping new queries to the identified search tasks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种多语言的无监督搜索任务识别方法
用户将他们的信息需求转换为搜索查询,然后在可用的搜索引擎上运行。搜索引擎注册的查询日志可以自动识别用户为满足信息需求而执行的搜索任务。搜索引擎日志包含多种语言的查询,但大多数现有的搜索任务识别方法都不是多语言的。有些方法依赖于自定义嵌入的搜索上下文训练或支持单一语言的外部索引集合,这使得支持搜索引擎中运行的查询的多语言变得很困难。其他方法依赖于监督组件和用户标识符来建模搜索任务。受监督的组件需要标记集合,这在多种语言中是困难和昂贵的。此外,对用户标识符的需求使得这些方法在与用户无关的场景中不可行。因此,我们提出了一种无监督的多语言搜索任务识别方法。所提出的方法与用户无关,因此可以在用户独立和个性化的场景中使用。此外,多语言查询表示使我们能够在将新查询映射到已识别的搜索任务时解决现有的权衡问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
MHM: Multi-modal Clinical Data based Hierarchical Multi-label Diagnosis Prediction Correlated Features Synthesis and Alignment for Zero-shot Cross-modal Retrieval DVGAN Models Versus Satisfaction: Towards a Better Understanding of Evaluation Metrics Global Context Enhanced Graph Neural Networks for Session-based Recommendation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1