Low power continuous-wave all-optical magnetic switching in ferromagnetic nanoarrays

K. Stenning, Xiaofei Xiao, Holly H. Holder, J. Gartside, A. Vanstone, O. Kennedy, R. Oulton, W. Branford
{"title":"Low power continuous-wave all-optical magnetic switching in ferromagnetic nanoarrays","authors":"K. Stenning, Xiaofei Xiao, Holly H. Holder, J. Gartside, A. Vanstone, O. Kennedy, R. Oulton, W. Branford","doi":"10.1117/12.2633356","DOIUrl":null,"url":null,"abstract":"All-optical magnetic switching promises ultrafast, high-resolution magnetisation control with the technological attraction of requiring no magnetic field. Existing all-optical switching schemes are driven by ultrafast transient effects, typically requiring power-hungry femtosecond-pulsed lasers and complex magnetic materials. Here, we demonstrate deterministic, all-optical magnetic switching in simple ferromagnetic nanomagnets (Ni$_{81}$Fe$_{19}$, Ni$_{50}$Fe$_{50}$) with sub-diffraction limit dimensions using a focused low-power, linearly-polarised continuous-wave laser. Isolated nanomagnets are switched across a range of dimensions, laser wavelengths and powers. All square-geometry artificial spin ice vertex configurations are written, including ground-state and energetically-unfavourable `monopole-like' states at powers as low as 2.74 mW. Usually, magnetic switching with linearly polarised light is symmetry-forbidden; however, here the laser spot has a similar size to the nanomagnets, producing an absorption distribution dependent on the relative nanoisland-spot displacement. We attribute the observed deterministic switching to the transient dynamics of this asymmetric absorption. No switching is observed in Co samples, suggesting the multi-species nature of NiFe alloys plays a role in reversal. The results presented here usher in cheap, low-power optically-controlled devices with impact across data storage, neuromorphic computation and reconfigurable magnonics.","PeriodicalId":374923,"journal":{"name":"Active Photonic Platforms (APP) 2022","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Active Photonic Platforms (APP) 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2633356","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

All-optical magnetic switching promises ultrafast, high-resolution magnetisation control with the technological attraction of requiring no magnetic field. Existing all-optical switching schemes are driven by ultrafast transient effects, typically requiring power-hungry femtosecond-pulsed lasers and complex magnetic materials. Here, we demonstrate deterministic, all-optical magnetic switching in simple ferromagnetic nanomagnets (Ni$_{81}$Fe$_{19}$, Ni$_{50}$Fe$_{50}$) with sub-diffraction limit dimensions using a focused low-power, linearly-polarised continuous-wave laser. Isolated nanomagnets are switched across a range of dimensions, laser wavelengths and powers. All square-geometry artificial spin ice vertex configurations are written, including ground-state and energetically-unfavourable `monopole-like' states at powers as low as 2.74 mW. Usually, magnetic switching with linearly polarised light is symmetry-forbidden; however, here the laser spot has a similar size to the nanomagnets, producing an absorption distribution dependent on the relative nanoisland-spot displacement. We attribute the observed deterministic switching to the transient dynamics of this asymmetric absorption. No switching is observed in Co samples, suggesting the multi-species nature of NiFe alloys plays a role in reversal. The results presented here usher in cheap, low-power optically-controlled devices with impact across data storage, neuromorphic computation and reconfigurable magnonics.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
铁磁纳米阵列中的低功率连续波全光磁开关
全光磁开关具有不需要磁场的技术吸引力,有望实现超快速、高分辨率的磁化控制。现有的全光开关方案是由超快瞬态效应驱动的,通常需要耗电的飞秒脉冲激光器和复杂的磁性材料。在这里,我们使用聚焦低功率线性偏振连续波激光器演示了具有亚衍射极限尺寸的简单铁磁纳米磁体(Ni$_{81}$Fe$_{19}$, Ni$_{50}$Fe$_{50}$)的确定性全光磁开关。孤立的纳米磁体在一系列尺寸、激光波长和功率上进行切换。所有的方形几何人工自旋冰顶点构型都被写入,包括基态和能量不利的“单极态”,功率低至2.74 mW。通常,线偏振光的磁开关是对称禁止的;然而,这里的激光光斑具有与纳米磁体相似的大小,产生依赖于相对纳米岛光斑位移的吸收分布。我们将观察到的确定性转换归因于这种不对称吸收的瞬态动力学。在Co样品中没有观察到开关,表明NiFe合金的多组分性质在反转中起作用。本文提出的结果将带来廉价、低功耗的光控设备,对数据存储、神经形态计算和可重构磁学产生影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optical rectification in inherently linear metasurfaces with broken inversion symmetry and active biophotonics Non-Hermitian skin effect in phase-locked laser arrays One-step nanoimprinting of PVA for dynamic dual-mode security metasurfaces Active nonlinear nano-optics with atomically-thin materials Nanomechanically nonlinear photonic metamaterials
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1