HDPG

Yang Ni, Mariam Issa, Danny Abraham, M. Imani, Xunzhao Yin, M. Imani
{"title":"HDPG","authors":"Yang Ni, Mariam Issa, Danny Abraham, M. Imani, Xunzhao Yin, M. Imani","doi":"10.1145/3489517.3530668","DOIUrl":null,"url":null,"abstract":"Traditional robot control or more general continuous control tasks often rely on carefully hand-crafted classic control methods. These models often lack the self-learning adaptability and intelligence to achieve human-level control. On the other hand, recent advancements in Reinforcement Learning (RL) present algorithms that have the capability of human-like learning. The integration of Deep Neural Networks (DNN) and RL thereby enables autonomous learning in robot control tasks. However, DNN-based RL brings both high-quality learning and high computation cost, which is no longer ideal for currently fast-growing edge computing scenarios. In this paper, we introduce HDPG, a highly-efficient policy-based RL algorithm using Hyperdimensional Computing. Hyperdimensional computing is a lightweight brain-inspired learning methodology; its holistic representation of information leads to a well-defined set of hardware-friendly high-dimensional operations. Our HDPG fully exploits the efficient HDC for high-quality state value approximation and policy gradient update. In our experiments, we use HDPG for robotics tasks with continuous action space and achieve significantly higher rewards than DNN-based RL. Our evaluation also shows that HDPG achieves 4.7× faster and 5.3× higher energy efficiency than DNN-based RL running on embedded FPGA.","PeriodicalId":373005,"journal":{"name":"Proceedings of the 59th ACM/IEEE Design Automation Conference","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 59th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489517.3530668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

Traditional robot control or more general continuous control tasks often rely on carefully hand-crafted classic control methods. These models often lack the self-learning adaptability and intelligence to achieve human-level control. On the other hand, recent advancements in Reinforcement Learning (RL) present algorithms that have the capability of human-like learning. The integration of Deep Neural Networks (DNN) and RL thereby enables autonomous learning in robot control tasks. However, DNN-based RL brings both high-quality learning and high computation cost, which is no longer ideal for currently fast-growing edge computing scenarios. In this paper, we introduce HDPG, a highly-efficient policy-based RL algorithm using Hyperdimensional Computing. Hyperdimensional computing is a lightweight brain-inspired learning methodology; its holistic representation of information leads to a well-defined set of hardware-friendly high-dimensional operations. Our HDPG fully exploits the efficient HDC for high-quality state value approximation and policy gradient update. In our experiments, we use HDPG for robotics tasks with continuous action space and achieve significantly higher rewards than DNN-based RL. Our evaluation also shows that HDPG achieves 4.7× faster and 5.3× higher energy efficiency than DNN-based RL running on embedded FPGA.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Timing macro modeling with graph neural networks Thermal-aware optical-electrical routing codesign for on-chip signal communications PHANES ScaleHLS Terminator on SkyNet: a practical DVFS attack on DNN hardware IP for UAV object detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1