Yang Ni, Mariam Issa, Danny Abraham, M. Imani, Xunzhao Yin, M. Imani
{"title":"HDPG","authors":"Yang Ni, Mariam Issa, Danny Abraham, M. Imani, Xunzhao Yin, M. Imani","doi":"10.1145/3489517.3530668","DOIUrl":null,"url":null,"abstract":"Traditional robot control or more general continuous control tasks often rely on carefully hand-crafted classic control methods. These models often lack the self-learning adaptability and intelligence to achieve human-level control. On the other hand, recent advancements in Reinforcement Learning (RL) present algorithms that have the capability of human-like learning. The integration of Deep Neural Networks (DNN) and RL thereby enables autonomous learning in robot control tasks. However, DNN-based RL brings both high-quality learning and high computation cost, which is no longer ideal for currently fast-growing edge computing scenarios. In this paper, we introduce HDPG, a highly-efficient policy-based RL algorithm using Hyperdimensional Computing. Hyperdimensional computing is a lightweight brain-inspired learning methodology; its holistic representation of information leads to a well-defined set of hardware-friendly high-dimensional operations. Our HDPG fully exploits the efficient HDC for high-quality state value approximation and policy gradient update. In our experiments, we use HDPG for robotics tasks with continuous action space and achieve significantly higher rewards than DNN-based RL. Our evaluation also shows that HDPG achieves 4.7× faster and 5.3× higher energy efficiency than DNN-based RL running on embedded FPGA.","PeriodicalId":373005,"journal":{"name":"Proceedings of the 59th ACM/IEEE Design Automation Conference","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 59th ACM/IEEE Design Automation Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3489517.3530668","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
Traditional robot control or more general continuous control tasks often rely on carefully hand-crafted classic control methods. These models often lack the self-learning adaptability and intelligence to achieve human-level control. On the other hand, recent advancements in Reinforcement Learning (RL) present algorithms that have the capability of human-like learning. The integration of Deep Neural Networks (DNN) and RL thereby enables autonomous learning in robot control tasks. However, DNN-based RL brings both high-quality learning and high computation cost, which is no longer ideal for currently fast-growing edge computing scenarios. In this paper, we introduce HDPG, a highly-efficient policy-based RL algorithm using Hyperdimensional Computing. Hyperdimensional computing is a lightweight brain-inspired learning methodology; its holistic representation of information leads to a well-defined set of hardware-friendly high-dimensional operations. Our HDPG fully exploits the efficient HDC for high-quality state value approximation and policy gradient update. In our experiments, we use HDPG for robotics tasks with continuous action space and achieve significantly higher rewards than DNN-based RL. Our evaluation also shows that HDPG achieves 4.7× faster and 5.3× higher energy efficiency than DNN-based RL running on embedded FPGA.