Speeding Up FPGA Placement: Parallel Algorithms and Methods

Ma An, J. Gregory Steffan, Vaughn Betz
{"title":"Speeding Up FPGA Placement: Parallel Algorithms and Methods","authors":"Ma An, J. Gregory Steffan, Vaughn Betz","doi":"10.1109/FCCM.2014.60","DOIUrl":null,"url":null,"abstract":"Placement of a large FPGA design now commonly requires several hours, significantly hindering designer productivity. Furthermore, FPGA capacity is growing faster than CPU speed, which will further increase placement time unless new approaches are found. Multi-core processors are now ubiquitous, however, and some recent processors also have hardware support for transactional memory (TM), making parallelism an increasingly attractive approach for speeding up placement. We investigate methods to parallelize the simulated annealing placement algorithm in VPR, which is widely used in FPGA research. We explore both algorithmic changes and the use of different parallel programming paradigms and hardware, including TM, thread-level speculation (TLS) and lock-free techniques. We find that hardware TM enables large speedups (8.1x on average), but compromises “move fairness” and leads to an unacceptable quality loss. TLS scales poorly, with a maximum 2.2x speedup, but preserves quality. A new dependency checking parallel strategy achieves the best balance: the deterministic version achieves 5.9x speedup and no quality loss, while the non-deterministic, lock-free version can scale to a 34x speedup.","PeriodicalId":246162,"journal":{"name":"2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 22nd Annual International Symposium on Field-Programmable Custom Computing Machines","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FCCM.2014.60","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

Abstract

Placement of a large FPGA design now commonly requires several hours, significantly hindering designer productivity. Furthermore, FPGA capacity is growing faster than CPU speed, which will further increase placement time unless new approaches are found. Multi-core processors are now ubiquitous, however, and some recent processors also have hardware support for transactional memory (TM), making parallelism an increasingly attractive approach for speeding up placement. We investigate methods to parallelize the simulated annealing placement algorithm in VPR, which is widely used in FPGA research. We explore both algorithmic changes and the use of different parallel programming paradigms and hardware, including TM, thread-level speculation (TLS) and lock-free techniques. We find that hardware TM enables large speedups (8.1x on average), but compromises “move fairness” and leads to an unacceptable quality loss. TLS scales poorly, with a maximum 2.2x speedup, but preserves quality. A new dependency checking parallel strategy achieves the best balance: the deterministic version achieves 5.9x speedup and no quality loss, while the non-deterministic, lock-free version can scale to a 34x speedup.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
加速FPGA布局:并行算法和方法
现在放置一个大型FPGA设计通常需要几个小时,这极大地阻碍了设计人员的工作效率。此外,FPGA容量的增长速度快于CPU速度,这将进一步增加放置时间,除非找到新的方法。然而,多核处理器现在无处不在,而且一些最新的处理器还具有对事务性内存(TM)的硬件支持,这使得并行成为加速放置的一种越来越有吸引力的方法。研究了在FPGA研究中广泛应用的VPR模拟退火算法的并行化方法。我们探讨了算法的变化以及不同并行编程范式和硬件的使用,包括TM、线程级推测(TLS)和无锁技术。我们发现硬件TM可以实现较大的加速(平均8.1倍),但会损害“移动公平性”并导致不可接受的质量损失。TLS的可扩展性很差,最大加速为2.2倍,但保留了质量。一种新的依赖检查并行策略实现了最佳平衡:确定性版本实现了5.9倍的加速,没有质量损失,而非确定性、无锁的版本可以扩展到34倍的加速。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Architectural Approach to Characterizing and Eliminating Sources of Inefficiency in a Soft Processor Design High-Throughput Fixed-Point Object Detection on FPGAs A Hierarchical Memory Architecture with NoC Support for MPSoC on FPGAs System-Level Retiming and Pipelining Harmonica: An FPGA-Based Data Parallel Soft Core
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1