A Robot Path Planning Method Based on Synergy Behavior of Cockroach Colony

Le Cheng, Lyu Chang, Yanhong Song, Haibo Wang, Yuetang Bian
{"title":"A Robot Path Planning Method Based on Synergy Behavior of Cockroach Colony","authors":"Le Cheng, Lyu Chang, Yanhong Song, Haibo Wang, Yuetang Bian","doi":"10.34028/iajit/20/5/4","DOIUrl":null,"url":null,"abstract":"By studying the biological behavior of cockroaches, a bionic algorithm, Cooperative Learning Cockroach Colony Optimization (CLCCO), is presented in this paper. The aim of CLCCO is to provide an efficient method to solve Robot Path Planning (RPP) problems. The CLCCO algorithm is based on the idea of synergy behavior of cockroach colony and machine learning. With pheromone, the cockroach colony achieves population synergy, which includes the follow and diversion behaviors. The strategy of Fibonacci transformation is used for the cockroach individual to choose the next feasible cell. The technologies of λ-geometry and multi-objective search make the paths searched smoother and greatly improve the algorithm search efficiency. In particular, the CLCCO algorithm requires only two parameters to be set. When CLCCO is applied to real robots, a path compression technique is designed. The simulation results show that the CLCCO algorithm demonstrates high efficiency in mostly tests.","PeriodicalId":161392,"journal":{"name":"The International Arab Journal of Information Technology","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The International Arab Journal of Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34028/iajit/20/5/4","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

By studying the biological behavior of cockroaches, a bionic algorithm, Cooperative Learning Cockroach Colony Optimization (CLCCO), is presented in this paper. The aim of CLCCO is to provide an efficient method to solve Robot Path Planning (RPP) problems. The CLCCO algorithm is based on the idea of synergy behavior of cockroach colony and machine learning. With pheromone, the cockroach colony achieves population synergy, which includes the follow and diversion behaviors. The strategy of Fibonacci transformation is used for the cockroach individual to choose the next feasible cell. The technologies of λ-geometry and multi-objective search make the paths searched smoother and greatly improve the algorithm search efficiency. In particular, the CLCCO algorithm requires only two parameters to be set. When CLCCO is applied to real robots, a path compression technique is designed. The simulation results show that the CLCCO algorithm demonstrates high efficiency in mostly tests.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于蚁群协同行为的机器人路径规划方法
通过研究蟑螂的生物学行为,提出了一种仿生算法——合作学习蟑螂群体优化算法(Cooperative Learning蜚蠊Colony Optimization, CLCCO)。CLCCO的目的是提供一种有效的方法来解决机器人路径规划(RPP)问题。CLCCO算法是基于蟑螂群体协同行为和机器学习的思想。在信息素的作用下,蟑螂群体实现了种群协同,包括跟随和转移行为。采用斐波那契变换策略,使蟑螂个体选择下一个可行细胞。λ几何和多目标搜索技术使搜索路径更加平滑,大大提高了算法的搜索效率。具体来说,CLCCO算法只需要设置两个参数。将CLCCO应用于实际机器人时,设计了一种路径压缩技术。仿真结果表明,CLCCO算法在大多数测试中都具有较高的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cohesive Pair-Wises Constrained Deep Embedding for Semi-Supervised Clustering with Very Few Labeled Samples* Scrupulous SCGAN Framework for Recognition of Restored Images with Caffe based PCA Filtration Fuzzy Heuristics for Detecting and Preventing Black Hole Attack XAI-PDF: A Robust Framework for Malicious PDF Detection Leveraging SHAP-Based Feature Engineering Healthcare Data Security in Cloud Storage Using Light Weight Symmetric Key Algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1