Compression Speed Enhancements to LZO for Multi-core Systems

Jason Kane, Qing Yang
{"title":"Compression Speed Enhancements to LZO for Multi-core Systems","authors":"Jason Kane, Qing Yang","doi":"10.1109/SBAC-PAD.2012.29","DOIUrl":null,"url":null,"abstract":"This paper examines several promising throughput enhancements to the Lempel-Ziv-Oberhumer (LZO) 1x-1-15 data compression algorithm. Of many algorithm variants present in the current library version, 2.06, LZO 1x-1-15 is considered to be the fastest, geared toward speed rather than compression ratio. We present several algorithm modifications tailored to modern multi-core architectures in this paper that are intended to increase compression speed while minimizing any loss in compression ratio. On average, the experimental results show that on a modern quad core system, a 3.9x speedup in compression time is achieved over the baseline algorithm with no loss to compression ratio. Allowing for a 25% loss in compression ratio, up to a 5.4x speedup in compression time was observed.","PeriodicalId":232444,"journal":{"name":"2012 IEEE 24th International Symposium on Computer Architecture and High Performance Computing","volume":"216 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 24th International Symposium on Computer Architecture and High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBAC-PAD.2012.29","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

This paper examines several promising throughput enhancements to the Lempel-Ziv-Oberhumer (LZO) 1x-1-15 data compression algorithm. Of many algorithm variants present in the current library version, 2.06, LZO 1x-1-15 is considered to be the fastest, geared toward speed rather than compression ratio. We present several algorithm modifications tailored to modern multi-core architectures in this paper that are intended to increase compression speed while minimizing any loss in compression ratio. On average, the experimental results show that on a modern quad core system, a 3.9x speedup in compression time is achieved over the baseline algorithm with no loss to compression ratio. Allowing for a 25% loss in compression ratio, up to a 5.4x speedup in compression time was observed.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多核系统LZO压缩速度增强
本文研究了Lempel-Ziv-Oberhumer (LZO) 1x-1-15数据压缩算法的几个有希望的吞吐量增强。在当前库版本2.06中存在的许多算法变体中,LZO 1x-1-15被认为是最快的,它关注的是速度而不是压缩比。在本文中,我们提出了针对现代多核架构量身定制的几种算法修改,旨在提高压缩速度,同时最大限度地减少压缩比的损失。平均而言,实验结果表明,在现代四核系统上,在没有压缩比损失的情况下,压缩时间比基线算法提高了3.9倍。在允许压缩比损失25%的情况下,可以观察到压缩时间加速高达5.4倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using Heterogeneous Networks to Improve Energy Efficiency in Direct Coherence Protocols for Many-Core CMPs Cloud Workload Analysis with SWAT Energy-Performance Tradeoffs in Software Transactional Memory CSHARP: Coherence and SHaring Aware Cache Replacement Policies for Parallel Applications Exploiting Concurrent GPU Operations for Efficient Work Stealing on Multi-GPUs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1