Multivariate embedding based causaltiy detection with short time series

Chuan Luo, D. Zeng
{"title":"Multivariate embedding based causaltiy detection with short time series","authors":"Chuan Luo, D. Zeng","doi":"10.1109/ISI.2015.7165954","DOIUrl":null,"url":null,"abstract":"Existing causal inference methods for social media usually rely on limited explicit causal context, preassume certain user interaction model, or neglect the nonlinear nature of social interaction, which could lead to bias estimations of causality. Besides, they often require sufficiently long time series to achieve reasonable results. Here we propose to take advantage of multivariate embedding to perform causality detection in social media. Experimental results show the efficacy of the proposed approach in causality detection and user behavior prediction in social media.","PeriodicalId":292352,"journal":{"name":"2015 IEEE International Conference on Intelligence and Security Informatics (ISI)","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-05-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Intelligence and Security Informatics (ISI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISI.2015.7165954","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Existing causal inference methods for social media usually rely on limited explicit causal context, preassume certain user interaction model, or neglect the nonlinear nature of social interaction, which could lead to bias estimations of causality. Besides, they often require sufficiently long time series to achieve reasonable results. Here we propose to take advantage of multivariate embedding to perform causality detection in social media. Experimental results show the efficacy of the proposed approach in causality detection and user behavior prediction in social media.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于多元嵌入的短时间序列因果关系检测
现有的社交媒体因果推理方法往往依赖于有限的显性因果语境,预设了一定的用户交互模型,或者忽视了社交互动的非线性,导致因果关系的估计存在偏差。此外,它们通常需要足够长的时间序列才能获得合理的结果。在这里,我们提出利用多元嵌入来进行社交媒体的因果关系检测。实验结果表明了该方法在社交媒体因果关系检测和用户行为预测方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling emotion entrainment of online users in emergency events Exploring the effect of permission notice on users' initial trust to an application store: The case of China's Android application market Multi-objective evolutionary algorithms and multiagent models for optimizing police dispatch Personality based public sentiment classification in microblog Social sensor analytics: Making sense of network models in social media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1