Vehicle Efficiency Prediction using Machine Learning Algorithms

P. R., A. Choudhary, Pulak Jain, Om Kajave
{"title":"Vehicle Efficiency Prediction using Machine Learning Algorithms","authors":"P. R., A. Choudhary, Pulak Jain, Om Kajave","doi":"10.1109/ICSMDI57622.2023.00076","DOIUrl":null,"url":null,"abstract":"The performance analysis and efficiency of a vehicle play a prominent role and a very necessary step to do in today's scenario. There are various instances when the user feels reluctant to discard the vehicle. In such cases where the user is ignorant of the fact to discard the car, the concerned authorities must come forward to check whether the user is using the car beyond the limit. Therefore, there is an increasing need to save the environment and nature to live a sustainable life. The performance analysis of the car is based on the engine type, number of engine cylinders, fuel type, etc. This study predicts the mpg value by using machine learning models like Random Forest (RF), K-Nearest Neighbors (KNN), XG-Boost, Ridge Regression, Lasso Regression, etc. and based on that it is compared with the optimum value of mpg and hence one can reach to a decision to discard the vehicle.","PeriodicalId":373017,"journal":{"name":"2023 3rd International Conference on Smart Data Intelligence (ICSMDI)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 3rd International Conference on Smart Data Intelligence (ICSMDI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSMDI57622.2023.00076","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The performance analysis and efficiency of a vehicle play a prominent role and a very necessary step to do in today's scenario. There are various instances when the user feels reluctant to discard the vehicle. In such cases where the user is ignorant of the fact to discard the car, the concerned authorities must come forward to check whether the user is using the car beyond the limit. Therefore, there is an increasing need to save the environment and nature to live a sustainable life. The performance analysis of the car is based on the engine type, number of engine cylinders, fuel type, etc. This study predicts the mpg value by using machine learning models like Random Forest (RF), K-Nearest Neighbors (KNN), XG-Boost, Ridge Regression, Lasso Regression, etc. and based on that it is compared with the optimum value of mpg and hence one can reach to a decision to discard the vehicle.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习算法的车辆效率预测
在当今的场景中,车辆的性能分析和效率分析发挥着突出的作用,是非常必要的一步。用户不愿意丢弃车辆的情况有很多。在使用者不知道弃车的情况下,有关当局必须出面检查使用者是否超限使用汽车。因此,人们越来越需要保护环境和自然,以过上可持续的生活。汽车的性能分析是根据发动机类型、发动机缸数、燃油类型等进行的。本研究通过使用随机森林(RF)、k近邻(KNN)、XG-Boost、Ridge Regression、Lasso Regression等机器学习模型来预测mpg值,并在此基础上与mpg的最优值进行比较,从而可以做出丢弃车辆的决定。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Decentralized Flight Insurance Smart Contract Application using Blockchain Stock Market Prediction using Machine Learning Technique HarGharSolar : Recognition of Potential Rooftop PhotoVoltaic Arrays Using Geospatial Imagery for Diverse Climate Zones. Artificial Intelligence Powered Early Detection of Heart Disease Network Intrusion Detection using Machine Learning Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1