Online handwriting recognition with support vector machines - a kernel approach

Claus Bahlmann, B. Haasdonk, H. Burkhardt
{"title":"Online handwriting recognition with support vector machines - a kernel approach","authors":"Claus Bahlmann, B. Haasdonk, H. Burkhardt","doi":"10.1109/IWFHR.2002.1030883","DOIUrl":null,"url":null,"abstract":"In this paper we describe a novel classification approach for online handwriting recognition. The technique combines dynamic time warping (DTW) and support vector machines (SVMs) by establishing a new SVM kernel. We call this kernel Gaussian DTW (GDTW) kernel. This kernel approach has a main advantage over common HMM techniques. It does not assume a model for the generative class conditional densities. Instead, it directly addresses the problem of discrimination by creating class boundaries and thus is less sensitive to modeling assumptions. By incorporating DTW in the kernel function, general classification problems with variable-sized sequential data can be handled. In this respect the proposed method can be straightforwardly applied to all classification problems, where DTW gives a reasonable distance measure, e.g., speech recognition or genome processing. We show experiments with this kernel approach on the UNIPEN handwriting data, achieving results comparable to an HMM-based technique.","PeriodicalId":114017,"journal":{"name":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"388","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Eighth International Workshop on Frontiers in Handwriting Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWFHR.2002.1030883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 388

Abstract

In this paper we describe a novel classification approach for online handwriting recognition. The technique combines dynamic time warping (DTW) and support vector machines (SVMs) by establishing a new SVM kernel. We call this kernel Gaussian DTW (GDTW) kernel. This kernel approach has a main advantage over common HMM techniques. It does not assume a model for the generative class conditional densities. Instead, it directly addresses the problem of discrimination by creating class boundaries and thus is less sensitive to modeling assumptions. By incorporating DTW in the kernel function, general classification problems with variable-sized sequential data can be handled. In this respect the proposed method can be straightforwardly applied to all classification problems, where DTW gives a reasonable distance measure, e.g., speech recognition or genome processing. We show experiments with this kernel approach on the UNIPEN handwriting data, achieving results comparable to an HMM-based technique.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在线手写识别与支持向量机-核方法
本文描述了一种新的在线手写识别分类方法。该技术通过建立新的支持向量机核,将动态时间规整(DTW)和支持向量机(SVM)相结合。我们称这个核为高斯DTW核。与普通HMM技术相比,这种核方法有一个主要优势。它没有假设生成类条件密度的模型。相反,它通过创建阶级边界直接解决了歧视问题,因此对建模假设不太敏感。通过在核函数中加入DTW,可以处理具有可变大小序列数据的一般分类问题。在这方面,所提出的方法可以直接应用于所有分类问题,其中DTW给出了合理的距离度量,例如语音识别或基因组处理。我们展示了在UNIPEN手写数据上使用这种内核方法的实验,获得了与基于hmm的技术相当的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Bigram-based post-processing for online handwriting recognition using correctness evaluation The effect of large training set sizes on online Japanese Kanji and English cursive recognizers Analysis of stability in hand-written dynamic signatures Recognition of courtesy amounts on bank checks based on a segmentation approach Vind(x): using the user through cooperative annotation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1