A background subtraction algorithm for indoor monitoring surveillance systems

Mohamed Bachir Boubekeur, Senlin Luo, H. Labidi
{"title":"A background subtraction algorithm for indoor monitoring surveillance systems","authors":"Mohamed Bachir Boubekeur, Senlin Luo, H. Labidi","doi":"10.1109/CIVEMSA.2015.7158605","DOIUrl":null,"url":null,"abstract":"The use of the gray level intensity is a common practice for most of background subtraction algorithms due to speed matters in real time applications, and performance related considerations, yet using the RGB color representation could increase the efficiency of object detection thus the accuracy of the algorithm increases. In this paper, a non-parametric background subtraction algorithm based on samples modeling, adaptive threshold, and color layers combination is presented. The proposed framework showed an increase in performances regarding the accuracy and the robustness of the detection in indoor situations. The presented performance analysis supports the robustness of the algorithm to gradual illumination changes and ghost artifact.","PeriodicalId":348918,"journal":{"name":"2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIVEMSA.2015.7158605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

The use of the gray level intensity is a common practice for most of background subtraction algorithms due to speed matters in real time applications, and performance related considerations, yet using the RGB color representation could increase the efficiency of object detection thus the accuracy of the algorithm increases. In this paper, a non-parametric background subtraction algorithm based on samples modeling, adaptive threshold, and color layers combination is presented. The proposed framework showed an increase in performances regarding the accuracy and the robustness of the detection in indoor situations. The presented performance analysis supports the robustness of the algorithm to gradual illumination changes and ghost artifact.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于室内监控系统的背景减法算法
由于实时应用中的速度问题和与性能相关的考虑,对于大多数背景减法算法来说,使用灰度强度是一种常见的做法,然而使用RGB颜色表示可以提高目标检测的效率,从而提高算法的准确性。提出了一种基于样本建模、自适应阈值和颜色层组合的非参数背景减法算法。所提出的框架在室内情况下的检测精度和鲁棒性方面表现出了提高。性能分析支持了该算法对渐变光照变化和鬼影伪影的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Novel method for failure prognostics of power MOSFET PLS initialized sequential estimator for target localization using AOA measurements Over provisioning rate in three-dimensional wireless sensor networks for partial sensing coverage Sizing compressed-air energy storage tanks for solar home systems Towards visual smart metering exploiting wM-Bus and DLMS/COSEM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1