New Allied Fuzzy C-Means algorithm for Takagi-Sugeno fuzzy model identification

Bouzbida Mohamed, Troudi Ahmed, Hassine Lassad, Chaari Abdelkader
{"title":"New Allied Fuzzy C-Means algorithm for Takagi-Sugeno fuzzy model identification","authors":"Bouzbida Mohamed, Troudi Ahmed, Hassine Lassad, Chaari Abdelkader","doi":"10.1109/ICEESA.2013.6578392","DOIUrl":null,"url":null,"abstract":"Takagi-Sugeno (TS) fuzzy model have received particular attention in the area of nonlinear identification due to their potentialities to approximate any nonlinear behavior [1]. In literature, several fuzzy clustering algorithms have been proposed to identify the parameters involved in the Takagi-Sugeno fuzzy model, as the Fuzzy C-Means algorithm (FCM) and the Allied Fuzzy C-Means algorithm (AFCM). This paper presents the New Allied Fuzzy C-Means algorithm (NAFCM) extension of the AFCM algorithm. Then an optimization method using the Particle Swarm Optimization method (PSO) combined with the NAFCM algorithm is presented in this paper (NAFCM-PSO algorithm). The simulation's results on a nonlinear system shows that the New Allied Fuzzy C-Means algorithm combined with the PSO algorithm gives results more effective and robust than the Allied Fuzzy C-Means algorithm.","PeriodicalId":212631,"journal":{"name":"2013 International Conference on Electrical Engineering and Software Applications","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Electrical Engineering and Software Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEESA.2013.6578392","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Takagi-Sugeno (TS) fuzzy model have received particular attention in the area of nonlinear identification due to their potentialities to approximate any nonlinear behavior [1]. In literature, several fuzzy clustering algorithms have been proposed to identify the parameters involved in the Takagi-Sugeno fuzzy model, as the Fuzzy C-Means algorithm (FCM) and the Allied Fuzzy C-Means algorithm (AFCM). This paper presents the New Allied Fuzzy C-Means algorithm (NAFCM) extension of the AFCM algorithm. Then an optimization method using the Particle Swarm Optimization method (PSO) combined with the NAFCM algorithm is presented in this paper (NAFCM-PSO algorithm). The simulation's results on a nonlinear system shows that the New Allied Fuzzy C-Means algorithm combined with the PSO algorithm gives results more effective and robust than the Allied Fuzzy C-Means algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于Takagi-Sugeno模糊模型识别的新联合模糊c均值算法
Takagi-Sugeno (TS)模糊模型由于具有近似任何非线性行为的潜力而在非线性识别领域受到特别关注[1]。在文献中,已经提出了几种模糊聚类算法来识别Takagi-Sugeno模糊模型中涉及的参数,如模糊C-Means算法(FCM)和Allied fuzzy C-Means算法(AFCM)。本文提出了一种新的联合模糊c均值算法(NAFCM),是对AFCM算法的扩展。在此基础上,提出了一种将粒子群优化方法(PSO)与NAFCM算法相结合的优化方法(NAFCM-PSO算法)。在一个非线性系统上的仿真结果表明,新型联合模糊c -均值算法与粒子群算法相结合的结果比联合模糊c -均值算法更有效,鲁棒性更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal expansion of linear system using generalized orthogonal basis Photovoltaic properties of devices using fullerene and copper-phthalocyanine doped with poly(3-hexylthiophène) Simulation of a Tunisian wind farm of Sidi-Daoud using PSAT Adaptive observer approach for actuators multiplicative faults detection and isolation Discrete time sliding mode control of PMSM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1