{"title":"Training Mixed-Objective Pointing Decoders for Block-Level Optimization in Search Recommendation","authors":"Harsh Kohli","doi":"10.1145/3397271.3401236","DOIUrl":null,"url":null,"abstract":"Related or ideal follow-up suggestions to a web query in search engines are often optimized based on several different parameters -- relevance to the original query, diversity, click probability etc. One or many rankers may be trained to score each suggestion from a candidate pool based on these factors. These scorers are usually pairwise classification tasks where each training example consists of a user query and a single suggestion from the list of candidates. We propose an architecture that takes all candidate suggestions associated with a given query and outputs a suggestion block. We discuss the benefits of such an architecture over traditional approaches and experiment with further enforcing each individual metric through mixed-objective training.","PeriodicalId":252050,"journal":{"name":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2020-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397271.3401236","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Related or ideal follow-up suggestions to a web query in search engines are often optimized based on several different parameters -- relevance to the original query, diversity, click probability etc. One or many rankers may be trained to score each suggestion from a candidate pool based on these factors. These scorers are usually pairwise classification tasks where each training example consists of a user query and a single suggestion from the list of candidates. We propose an architecture that takes all candidate suggestions associated with a given query and outputs a suggestion block. We discuss the benefits of such an architecture over traditional approaches and experiment with further enforcing each individual metric through mixed-objective training.