{"title":"DtCraft: A distributed execution engine for compute-intensive applications","authors":"Tsung-Wei Huang, Chun-Xun Lin, Martin D. F. Wong","doi":"10.1109/ICCAD.2017.8203853","DOIUrl":null,"url":null,"abstract":"Recent years have seen rapid growth in data-driven distributed systems such as Hadoop MapReduce, Spark, and Dryad. However, the counterparts for high-performance or compute-intensive applications including large-scale optimizations, modeling, and simulations are still nascent. In this paper, we introduce DtCraft, a modern C+,+,17-based distributed execution engine that efficiently supports a new powerful programming model for building high-performance parallel applications. Users need no understanding of distributed computing and can focus on high-level developments, leaving difficult details such as concurrency controls, workload distribution, and fault tolerance handled by our system transparently. We have evaluated DtCraft on both micro-benchmarks and large-scale optimization problems, and shown promising performance on computer clusters. In a particular semicondictor design problem, we achieved 30 x speedup with 40 nodes and 15 x less development efforts over hand-crafted implementation.","PeriodicalId":126686,"journal":{"name":"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","volume":"123 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE/ACM International Conference on Computer-Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.2017.8203853","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8
Abstract
Recent years have seen rapid growth in data-driven distributed systems such as Hadoop MapReduce, Spark, and Dryad. However, the counterparts for high-performance or compute-intensive applications including large-scale optimizations, modeling, and simulations are still nascent. In this paper, we introduce DtCraft, a modern C+,+,17-based distributed execution engine that efficiently supports a new powerful programming model for building high-performance parallel applications. Users need no understanding of distributed computing and can focus on high-level developments, leaving difficult details such as concurrency controls, workload distribution, and fault tolerance handled by our system transparently. We have evaluated DtCraft on both micro-benchmarks and large-scale optimization problems, and shown promising performance on computer clusters. In a particular semicondictor design problem, we achieved 30 x speedup with 40 nodes and 15 x less development efforts over hand-crafted implementation.