{"title":"Blind separation of dependent sources using Schweizer-Wolff measure","authors":"Keying Liu, Rui Li, Fasong Wang","doi":"10.1109/URKE.2012.6319571","DOIUrl":null,"url":null,"abstract":"There are a large variety of applications that require considering sources that usually behave light or strong dependence and this is not the case that common blind signal separation (BSS) algorithms can do. The purpose of this paper is to develop non-parametric BSS algorithm for linear dependent source signals, which is proposed under the framework of contrast method. The contrast function is derived from the Schweizer-Wolff measure of pairwise dependence between the variables. Simulation results show that the proposed algorithm is able to separate the dependent signals and yield ideal performance.","PeriodicalId":277189,"journal":{"name":"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 2nd International Conference on Uncertainty Reasoning and Knowledge Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/URKE.2012.6319571","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
There are a large variety of applications that require considering sources that usually behave light or strong dependence and this is not the case that common blind signal separation (BSS) algorithms can do. The purpose of this paper is to develop non-parametric BSS algorithm for linear dependent source signals, which is proposed under the framework of contrast method. The contrast function is derived from the Schweizer-Wolff measure of pairwise dependence between the variables. Simulation results show that the proposed algorithm is able to separate the dependent signals and yield ideal performance.