How Do the Score Distributions of Subpopulations Influence Fairness Notions?

Carmen Mazijn, J. Danckaert, V. Ginis
{"title":"How Do the Score Distributions of Subpopulations Influence Fairness Notions?","authors":"Carmen Mazijn, J. Danckaert, V. Ginis","doi":"10.1145/3461702.3462601","DOIUrl":null,"url":null,"abstract":"Automated decisions based on trained algorithms influence human life in an increasingly far-reaching way. In recent years, it has become clear that these decisions are often accompanied by bias and unfair treatment of different subpopulations.Meanwhile, several notions of fairness circulate in the scientific literature, with trade-offs between profit and fairness and between fairness metrics among themselves. Based on both analytical calculations and numerical simulations, we show in this study that some profit-fairness trade-offs and fairness-fairness trade-offs depend substantially on the underlying score distributions given to subpopulations and we present two complementary perspectives to visualize this influence. We further show that higher symmetry in scores of subpopulations can significantly reduce the trade-offs between fairness notions within a given acceptable strictness, even when sacrificing expressiveness. Our exploratory study may help to understand how to overcome the strict mathematical statements about the statistical incompatibility of certain fairness notions.","PeriodicalId":197336,"journal":{"name":"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3461702.3462601","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Automated decisions based on trained algorithms influence human life in an increasingly far-reaching way. In recent years, it has become clear that these decisions are often accompanied by bias and unfair treatment of different subpopulations.Meanwhile, several notions of fairness circulate in the scientific literature, with trade-offs between profit and fairness and between fairness metrics among themselves. Based on both analytical calculations and numerical simulations, we show in this study that some profit-fairness trade-offs and fairness-fairness trade-offs depend substantially on the underlying score distributions given to subpopulations and we present two complementary perspectives to visualize this influence. We further show that higher symmetry in scores of subpopulations can significantly reduce the trade-offs between fairness notions within a given acceptable strictness, even when sacrificing expressiveness. Our exploratory study may help to understand how to overcome the strict mathematical statements about the statistical incompatibility of certain fairness notions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
亚群体的得分分布如何影响公平观念?
基于训练算法的自动化决策对人类生活的影响越来越深远。近年来,很明显,这些决定往往伴随着对不同亚群体的偏见和不公平待遇。与此同时,科学文献中流传着一些公平的概念,在利润与公平之间以及它们之间的公平指标之间进行权衡。基于分析计算和数值模拟,我们在本研究中表明,一些利润-公平权衡和公平-公平权衡在很大程度上取决于给予亚群体的潜在得分分布,我们提出了两个互补的观点来可视化这种影响。我们进一步表明,在给定的可接受严格度内,更高的子种群分数的对称性可以显著减少公平概念之间的权衡,即使牺牲了表达性。我们的探索性研究可能有助于理解如何克服关于某些公平概念的统计不相容的严格数学陈述。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Beyond Reasonable Doubt: Improving Fairness in Budget-Constrained Decision Making using Confidence Thresholds Measuring Automated Influence: Between Empirical Evidence and Ethical Values Artificial Intelligence and the Purpose of Social Systems Ethically Compliant Planning within Moral Communities Co-design and Ethical Artificial Intelligence for Health: Myths and Misconceptions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1