Triple frequency radar retrieval of microphysical properties of snow

K. Mróz, A. Battaglia, C. Nguyen, A. Heymsfield, A. Protat, M. Wolde
{"title":"Triple frequency radar retrieval of microphysical properties of snow","authors":"K. Mróz, A. Battaglia, C. Nguyen, A. Heymsfield, A. Protat, M. Wolde","doi":"10.5194/amt-2021-227","DOIUrl":null,"url":null,"abstract":"Abstract. An algorithm based on triple-frequency (X, Ka, W) radar measurements that retrieves the size, water content and degree of riming of ice clouds is presented. This study exploits the potential of multi-frequency radar measurements to provide information on bulk snow density that should underpin better estimates of the snow characteristic size and content within the radar volume. The algorithm is based on Bayes' rule with riming parameterized by the “fill-in” model. The radar reflectivities are simulated with a range of scattering models corresponding to realistic snowflake shapes. The algorithm is tested on multi-frequency radar data collected during the ESA-funded Radar Snow Experiment. During this campaign in-situ microphysical probes were mounted on the same airplane as the radars. This nearly perfectly collocated dataset of the remote and in-situ measurements gives an opportunity to derive a combined multi-instrument estimate of snow microphysical properties that is used for a rigorous validation of the radar retrieval. Results suggest that the triple-frequency retrieval performs well in estimating ice water content and mean-mass-weighted diameters obtaining root-mean-square-error of 0.13 and 0.15, respectively for log10 IWC and log10 Dm. The retrieval of the degree of riming is more challenging and only the algorithm that uses Doppler information obtains results that are highly correlated with the in-situ data.\n","PeriodicalId":441110,"journal":{"name":"Atmospheric Measurement Techniques Discussions","volume":"39 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Measurement Techniques Discussions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5194/amt-2021-227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Abstract. An algorithm based on triple-frequency (X, Ka, W) radar measurements that retrieves the size, water content and degree of riming of ice clouds is presented. This study exploits the potential of multi-frequency radar measurements to provide information on bulk snow density that should underpin better estimates of the snow characteristic size and content within the radar volume. The algorithm is based on Bayes' rule with riming parameterized by the “fill-in” model. The radar reflectivities are simulated with a range of scattering models corresponding to realistic snowflake shapes. The algorithm is tested on multi-frequency radar data collected during the ESA-funded Radar Snow Experiment. During this campaign in-situ microphysical probes were mounted on the same airplane as the radars. This nearly perfectly collocated dataset of the remote and in-situ measurements gives an opportunity to derive a combined multi-instrument estimate of snow microphysical properties that is used for a rigorous validation of the radar retrieval. Results suggest that the triple-frequency retrieval performs well in estimating ice water content and mean-mass-weighted diameters obtaining root-mean-square-error of 0.13 and 0.15, respectively for log10 IWC and log10 Dm. The retrieval of the degree of riming is more challenging and only the algorithm that uses Doppler information obtains results that are highly correlated with the in-situ data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
雪微物理特性的三频雷达反演
摘要提出了一种基于三频(X、Ka、W)雷达测量的冰云大小、含水量和边缘度反演算法。本研究利用了多频雷达测量的潜力,提供了关于大块雪密度的信息,这应该是更好地估计雷达体积内雪的特征大小和含量的基础。该算法基于贝叶斯规则,用“填充”模型参数化边缘。利用与真实雪花形状相对应的一系列散射模型对雷达反射率进行了模拟。该算法在esa资助的雷达降雪实验中采集的多频雷达数据上进行了测试。在这次行动中,原位微物理探测器与雷达安装在同一架飞机上。这种远程和现场测量数据集几乎完美地组合在一起,为获得积雪微物理特性的多仪器组合估计提供了机会,用于严格验证雷达检索。结果表明,对于log10 IWC和log10 Dm,三频反演在估算冰含水量和平均质量加权直径方面表现良好,均方根误差分别为0.13和0.15,而圈闭程度的反演更具挑战性,只有使用多普勒信息的算法才能获得与原位数据高度相关的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improved monitoring of shipping NO2 with TROPOMI: decreasing NOx emissions in European seas during the COVID-19 pandemic Continuous mapping of fine particulate matter (PM2.5) air quality in East Asia at daily 6×6 km2 resolution by application of a random forest algorithm to 2011–2019 GOCI geostationary satellite data Fill dynamics and sample mixing in the AirCore  Relative errors of derived multi-wavelengths intensive aerosol optical properties using CAPS_SSA, Nephelometer and TAP measurements Laboratory evaluation of the scattering matrix of ragweed, ash, birch and pine pollens towards pollen classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1