Water Production Forecasting using Adaptive Neuro-Fuzzy Inference System

Sayyidah Hafidhatul Ilmi, A. N. Handayani, A. Wibawa
{"title":"Water Production Forecasting using Adaptive Neuro-Fuzzy Inference System","authors":"Sayyidah Hafidhatul Ilmi, A. N. Handayani, A. Wibawa","doi":"10.1109/EIConCIT.2018.8878549","DOIUrl":null,"url":null,"abstract":"Water is essential for human life. Regional Water Supplier piping system may provide clean water for people. The company may need a forecasting system to estimate the water production. This paper implemented an Adaptive Neuro-Fuzzy Inference System (ANFIS) with hybrid learning: Least Square Estimator method and Error Backpropagation methods. The dataset used Generalized Bell membership function and clustered by Fuzzy C-Means (FCM). The selected approach produced 0.364% MAPE error value.","PeriodicalId":424909,"journal":{"name":"2018 2nd East Indonesia Conference on Computer and Information Technology (EIConCIT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 2nd East Indonesia Conference on Computer and Information Technology (EIConCIT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EIConCIT.2018.8878549","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Water is essential for human life. Regional Water Supplier piping system may provide clean water for people. The company may need a forecasting system to estimate the water production. This paper implemented an Adaptive Neuro-Fuzzy Inference System (ANFIS) with hybrid learning: Least Square Estimator method and Error Backpropagation methods. The dataset used Generalized Bell membership function and clustered by Fuzzy C-Means (FCM). The selected approach produced 0.364% MAPE error value.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于自适应神经模糊推理系统的水量预测
水是人类生存所必需的。区域供水管道系统可为人们提供清洁用水。该公司可能需要一个预测系统来估计产水量。本文采用最小二乘估计和误差反向传播混合学习方法实现了自适应神经模糊推理系统。数据集采用广义贝尔隶属函数,并采用模糊c均值聚类。所选方法的MAPE误差值为0.364%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental Study on Zoning, Histogram, and Structural Methods to Classify Sundanese Characters from Handwriting Medicine Stock Forecasting Using Least Square Method Sentiment Analysis of Product Reviews using Naive Bayes Algorithm: A Case Study [EIConCIT 2018 Cover Page] Keynote Speech 3 Internet of Things (IoT) Technology For Star Fruit Plantation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1