{"title":"Graph-based Strategy for Establishing Morphology Similarity","authors":"Namit Juneja, J. Zola, V. Chandola, O. Wodo","doi":"10.1145/3468791.3468819","DOIUrl":null,"url":null,"abstract":"Analysis of morphological data is central to a broad class of scientific problems in materials science, astronomy, bio-medicine, and many others. Understanding relationships between morphologies is a core analytical task in such settings. In this paper, we propose a graph-based framework for measuring similarity between morphologies. Our framework delivers a novel representation of a morphology as an augmented graph that encodes application-specific knowledge through the use of configurable signature functions. It provides also an algorithm to compute the similarity between a pair of morphology graphs. We present experimental results in which the framework is applied to morphology data from high-fidelity numerical simulations that emerge in materials science. The results demonstrate that our proposed measure is superior in capturing the semantic similarity between morphologies, compared to the state-of-the-art methods such as FFT-based measures.","PeriodicalId":312773,"journal":{"name":"33rd International Conference on Scientific and Statistical Database Management","volume":"136 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"33rd International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3468791.3468819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Analysis of morphological data is central to a broad class of scientific problems in materials science, astronomy, bio-medicine, and many others. Understanding relationships between morphologies is a core analytical task in such settings. In this paper, we propose a graph-based framework for measuring similarity between morphologies. Our framework delivers a novel representation of a morphology as an augmented graph that encodes application-specific knowledge through the use of configurable signature functions. It provides also an algorithm to compute the similarity between a pair of morphology graphs. We present experimental results in which the framework is applied to morphology data from high-fidelity numerical simulations that emerge in materials science. The results demonstrate that our proposed measure is superior in capturing the semantic similarity between morphologies, compared to the state-of-the-art methods such as FFT-based measures.