An Intelligent And Transparent Inference: Spiking Neural Network For Causal Reasoning

Li Runyu, Luo Xiaoling, Wang Jun
{"title":"An Intelligent And Transparent Inference: Spiking Neural Network For Causal Reasoning","authors":"Li Runyu, Luo Xiaoling, Wang Jun","doi":"10.1109/ICCWAMTIP56608.2022.10016487","DOIUrl":null,"url":null,"abstract":"In light of mining large amounts of data, artificial intelligence (AI) has learned a very strong correlation between objects. However, its limitations lie in that it can’t summarize the causality between objects like human beings and it forms the blind box association mechanism. In this paper, we address these limitations and make the contributions: We propose an implementation of causal reasoning based on spiking neural network (SNN), which simulates causality using information processing with spiking activities. And the spike-timing-dependent plastic rules (STDP) is utilized as a method of causal reasoning, which is based on the topological structure of causal graph and can make the process visible. Through experiments, our model completes the inference of causal ladder proposed by Judea Pearl, and experiments prove that it can complete more complex causal reasoning under the condition of integrating multiple causality.","PeriodicalId":159508,"journal":{"name":"2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 19th International Computer Conference on Wavelet Active Media Technology and Information Processing (ICCWAMTIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCWAMTIP56608.2022.10016487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In light of mining large amounts of data, artificial intelligence (AI) has learned a very strong correlation between objects. However, its limitations lie in that it can’t summarize the causality between objects like human beings and it forms the blind box association mechanism. In this paper, we address these limitations and make the contributions: We propose an implementation of causal reasoning based on spiking neural network (SNN), which simulates causality using information processing with spiking activities. And the spike-timing-dependent plastic rules (STDP) is utilized as a method of causal reasoning, which is based on the topological structure of causal graph and can make the process visible. Through experiments, our model completes the inference of causal ladder proposed by Judea Pearl, and experiments prove that it can complete more complex causal reasoning under the condition of integrating multiple causality.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一个智能和透明的推理:用于因果推理的脉冲神经网络
由于挖掘了大量的数据,人工智能(AI)已经学会了对象之间非常强的相关性。但其局限性在于不能概括人等对象之间的因果关系,形成了盲箱联想机制。在本文中,我们解决了这些限制并做出了贡献:我们提出了一种基于尖峰神经网络(SNN)的因果推理实现,它使用带有尖峰活动的信息处理来模拟因果关系。利用基于因果图拓扑结构的峰值时变塑性规则(STDP)作为因果推理的一种方法,使因果图的过程可视化。通过实验,我们的模型完成了Judea Pearl提出的因果阶梯推理,实验证明它可以在整合多个因果关系的条件下完成更复杂的因果推理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Subcortico-Cortical Interactions Of Edge Functional Connectivity In Parkinson’s Disease Feature Modeling and Dimensionality Reduction to Improve ML-Based DDOS Detection Systems in SDN Environment Research on the "Deep Integration" of Information Technology and Precise Civic Education in Universities Knowledge Extraction and Discrimination Based Calibration on Medical Imaging Classification AW-PCNN: Adaptive Weighting Pyramidal Convolutional Neural Network for Fine-Grained Few-Shot Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1