Automatic Estimation of Neonatal Sleep/Wake States in the NICU Using 3D CNN

Yuki Ito, Kento Morita, T. Wakabayashi, H. Shinkoda, Asami Matsumoto, Yukari Noguchi, Masako Shiramizu
{"title":"Automatic Estimation of Neonatal Sleep/Wake States in the NICU Using 3D CNN","authors":"Yuki Ito, Kento Morita, T. Wakabayashi, H. Shinkoda, Asami Matsumoto, Yukari Noguchi, Masako Shiramizu","doi":"10.23919/WAC55640.2022.9934249","DOIUrl":null,"url":null,"abstract":"In the neonatal intensive care unit (NICU), the preterm infant located in incubator takes various medical care day and night. Unusual environment in NICU may affect neurodevelopment of newborn subject, some researches evaluate the sleep/wake state of subject by visual or using the Actigraph attached on the leg. This paper proposes a sleep/wake status estimation method using video images and convolutional neural network (CNN) to reduce assessment time and improve the reliability. The Brazelton’s criteria evaluates the newborn’s sleep/wake states in six stages, the proposed method performs six-class classification using 3D CNN. In the experiment, we conducted 4 experiments by using original data, two different frame shifting, and using the frame differential. Experimental results using 16 video of 8 subjects showed that the training using original dataset achieved the highest macro-F1 value (0.766) which improves the macro-F1 value (0.765) of our previous result using support vector machine (SVM) and optical flow. Results also suggested that the 3D CNN improves the classification accuracy but the data augmentation using frame shift is not suitable to our dataset.","PeriodicalId":339737,"journal":{"name":"2022 World Automation Congress (WAC)","volume":"218 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 World Automation Congress (WAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/WAC55640.2022.9934249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the neonatal intensive care unit (NICU), the preterm infant located in incubator takes various medical care day and night. Unusual environment in NICU may affect neurodevelopment of newborn subject, some researches evaluate the sleep/wake state of subject by visual or using the Actigraph attached on the leg. This paper proposes a sleep/wake status estimation method using video images and convolutional neural network (CNN) to reduce assessment time and improve the reliability. The Brazelton’s criteria evaluates the newborn’s sleep/wake states in six stages, the proposed method performs six-class classification using 3D CNN. In the experiment, we conducted 4 experiments by using original data, two different frame shifting, and using the frame differential. Experimental results using 16 video of 8 subjects showed that the training using original dataset achieved the highest macro-F1 value (0.766) which improves the macro-F1 value (0.765) of our previous result using support vector machine (SVM) and optical flow. Results also suggested that the 3D CNN improves the classification accuracy but the data augmentation using frame shift is not suitable to our dataset.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用3D CNN自动估计新生儿NICU的睡眠/清醒状态
在新生儿重症监护病房(NICU),位于保温箱中的早产儿日夜接受各种医疗护理。新生儿重症监护室的异常环境可能会影响新生受试者的神经发育,一些研究通过视觉或使用附着在腿上的活动记录仪来评估受试者的睡眠/清醒状态。本文提出了一种基于视频图像和卷积神经网络(CNN)的睡眠/觉醒状态估计方法,减少了评估时间,提高了可靠性。Brazelton标准将新生儿的睡眠/清醒状态分为六个阶段进行评估,该方法使用3D CNN进行六类分类。在实验中,我们分别使用原始数据、两次不同的移帧和使用帧差进行了4次实验。使用8个被试的16个视频进行的实验结果表明,使用原始数据集进行训练获得了最高的宏观f1值(0.766),提高了我们之前使用支持向量机和光流进行训练的结果的宏观f1值(0.765)。结果还表明,3D CNN提高了分类精度,但使用帧移位的数据增强不适合我们的数据集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Stability analysis of high slope based on MIDAS GTS digital simulation Research on Bridge Health Management Prediction System Based on deep learning Research on power technology and application architecture based on 5g message operation platform Algorithm modeling technology of computer aided fractal art pattern design Posture Estimation System for Excavator Manipulator Using Deep Learning and Inverse Kinematics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1