Optimization of DC motor speed control based on fuzzy logic-PID controller

A. Sheet
{"title":"Optimization of DC motor speed control based on fuzzy logic-PID controller","authors":"A. Sheet","doi":"10.17212/2782-2001-2021-3-143-153","DOIUrl":null,"url":null,"abstract":"In this paper the PID controller and the Fuzzy Logic Controller (FLC) are used to control the speed of separately excited DC motors. The proportional, integral and derivate (KP, KI, KD) gains of the PID controller are adjusted according to Fuzzy Logic rules. The FLC cotroller is designed according to fuzzy rules so that the system is fundamentally robust. Twenty-five fuzzy rules for self-tuning of each parameter of the PID controller are considered. The FLC has two inputs; the first one is the motor speed error (the difference between the reference and actual speed) and the second one is a change in the speed error (speed error derivative). The output of the FLC, i.e. the parameters of the PID controller, are used to control the speed of the separately excited DC Motor. This study shows that the precisiom feature of the PID controllers and the flexibllity feature of the fuzzy controller are presented in the fuzzy self-tuning PID controller. The fuzzy self – tuning approach implemented on the conventional PID structure improved the dynamic and static response of the system. The salient features of both conventional and fuzzy self-tuning controller outputs are explored by simulation using MATLAB. The simulation results demonstrate that the proposed self-tuned PID controller i.plementd a good dynamic behavior of the DC motor i.e. perfect speed tracking with a settling time, minimum overshoot and minimum steady state errorws.","PeriodicalId":292298,"journal":{"name":"Analysis and data processing systems","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Analysis and data processing systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17212/2782-2001-2021-3-143-153","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper the PID controller and the Fuzzy Logic Controller (FLC) are used to control the speed of separately excited DC motors. The proportional, integral and derivate (KP, KI, KD) gains of the PID controller are adjusted according to Fuzzy Logic rules. The FLC cotroller is designed according to fuzzy rules so that the system is fundamentally robust. Twenty-five fuzzy rules for self-tuning of each parameter of the PID controller are considered. The FLC has two inputs; the first one is the motor speed error (the difference between the reference and actual speed) and the second one is a change in the speed error (speed error derivative). The output of the FLC, i.e. the parameters of the PID controller, are used to control the speed of the separately excited DC Motor. This study shows that the precisiom feature of the PID controllers and the flexibllity feature of the fuzzy controller are presented in the fuzzy self-tuning PID controller. The fuzzy self – tuning approach implemented on the conventional PID structure improved the dynamic and static response of the system. The salient features of both conventional and fuzzy self-tuning controller outputs are explored by simulation using MATLAB. The simulation results demonstrate that the proposed self-tuned PID controller i.plementd a good dynamic behavior of the DC motor i.e. perfect speed tracking with a settling time, minimum overshoot and minimum steady state errorws.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于模糊逻辑- pid控制器的直流电动机速度控制优化
本文采用PID控制器和模糊控制器(FLC)对分励直流电动机进行转速控制。PID控制器的比例增益、积分增益和导数增益(KP、KI、KD)根据模糊逻辑规则进行调整。根据模糊规则设计了FLC控制器,使系统具有较强的鲁棒性。考虑了PID控制器各参数自整定的25条模糊规则。FLC有两个输入;第一个是电机转速误差(参考转速与实际转速之差),第二个是转速误差的变化(转速误差导数)。FLC的输出,即PID控制器的参数,用来控制分励直流电动机的转速。研究表明,模糊自整定PID控制器体现了PID控制器的精度特性和模糊控制器的柔性特性。在传统的PID结构上采用模糊自整定方法,改善了系统的动、静态响应。通过MATLAB仿真,探讨了传统自整定控制器和模糊自整定控制器输出的显著特征。仿真结果表明,所提出的自整定PID控制器具有良好的动态特性,即具有稳定时间、超调量最小和稳态误差最小的完美速度跟踪。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Determination of the dependence of the apparent density of ceramic samples on the molding moisture content of clay raw materials and compaction pressure based on regression models Development of a control and unit positioning system for a mechatronic rehabilitation complex A methodology for selecting algorithms for optimizing the resilience of energy infrastructures Analysis of operator eye movement characteristics to determine the degree of fatigue Study of the issues of methods for determining the type of content in incoming traffic
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1