Growth mechanism and electron spin resonance studies of Zn1−xNixO/NiO two-phase nanocomposite

D. Joshi, D. Harish, S. Nayak, D. Roy, M. Qureshi, R. L. N. Saiprasad, T. Shiyani, D. Pamu, S. Thota
{"title":"Growth mechanism and electron spin resonance studies of Zn1−xNixO/NiO two-phase nanocomposite","authors":"D. Joshi, D. Harish, S. Nayak, D. Roy, M. Qureshi, R. L. N. Saiprasad, T. Shiyani, D. Pamu, S. Thota","doi":"10.1109/ICEMELEC.2014.7151180","DOIUrl":null,"url":null,"abstract":"Two-phase nanocomposites comprised of Zn<sub>1-x</sub>Ni<sub>x</sub>O/NiO (0.05 ≤ x ≤ 0.3) were grown by using sol-gel process with hydrated metal acetates as precursors. Thermal decomposition of the co-precipitated oxalate α-ZnNi(C<sub>2</sub>O<sub>4</sub>) yields wurtzite h.c.p. Zn<sub>1-x</sub>Ni<sub>x</sub>O and f.c.c. NiO together. The X-band electron spin resonance spectra provide the signatures of anisotropic spin interactions with long-range magnetic ordering at 300 K. The temperature variation (120 K ≤ T ≤ 300 K) of the resonance field H<sub>R</sub>(T) and line-width ΔH<sub>PP</sub>(T) depicts a clear anomaly across 140 K associated with the blocking/freezing effects and the contribution of additional surface anisotropy (K<sub>eff</sub>) present in the system. Both H<sub>R</sub>(T) and ΔH<sub>PP</sub>(T) follows the power-law variation δH<sub>R</sub> = (ΔH<sub>PP</sub>)<sup>n</sup> with n ≃ 2.13, as expected for partially oriented nanocrystallites.","PeriodicalId":186054,"journal":{"name":"2014 IEEE 2nd International Conference on Emerging Electronics (ICEE)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 2nd International Conference on Emerging Electronics (ICEE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEMELEC.2014.7151180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Two-phase nanocomposites comprised of Zn1-xNixO/NiO (0.05 ≤ x ≤ 0.3) were grown by using sol-gel process with hydrated metal acetates as precursors. Thermal decomposition of the co-precipitated oxalate α-ZnNi(C2O4) yields wurtzite h.c.p. Zn1-xNixO and f.c.c. NiO together. The X-band electron spin resonance spectra provide the signatures of anisotropic spin interactions with long-range magnetic ordering at 300 K. The temperature variation (120 K ≤ T ≤ 300 K) of the resonance field HR(T) and line-width ΔHPP(T) depicts a clear anomaly across 140 K associated with the blocking/freezing effects and the contribution of additional surface anisotropy (Keff) present in the system. Both HR(T) and ΔHPP(T) follows the power-law variation δHR = (ΔHPP)n with n ≃ 2.13, as expected for partially oriented nanocrystallites.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Zn1−xNixO/NiO两相纳米复合材料的生长机理及电子自旋共振研究
采用溶胶-凝胶法制备了Zn1-xNixO/NiO(0.05≤x≤0.3)两相纳米复合材料。共沉淀草酸α-ZnNi(C2O4)热分解生成纤锌矿(hcp . Zn1-xNixO和fcc . NiO)。x波段电子自旋共振谱提供了300 K下具有长程磁有序的各向异性自旋相互作用的特征。共振场HR(T)和线宽ΔHPP(T)的温度变化(120 K≤T≤300 K)描述了与阻塞/冻结效应和系统中存在的附加表面各向异性(Keff)的贡献相关的140 K范围内的明显异常。HR(T)和ΔHPP(T)均服从幂律变化δHR = (ΔHPP)n, n≃2.13,符合部分取向纳米晶体的预期。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of Ga flux and rf-power on homoepitaxial growth of single crystalline GaN films Simulation study of the electrical behavior of bottom contact organic thin film transistors Effect of traps on small signal equivalent circuit in AlGaN/GaN HEMTs Subthreshold Analog/RF performance estimation of doping-less DGFET for ULP applications Suitability of sol-gel derived amorphous and crystalline compositions of In-Ga-Zn oxide for thin film transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1