Fangzhou Zhu, Chen Luo, Mingxuan Yuan, Yijian Zhu, Zhengqing Zhang, Tao Gu, Ke Deng, Weixiong Rao, Jia Zeng
{"title":"City-Scale Localization with Telco Big Data","authors":"Fangzhou Zhu, Chen Luo, Mingxuan Yuan, Yijian Zhu, Zhengqing Zhang, Tao Gu, Ke Deng, Weixiong Rao, Jia Zeng","doi":"10.1145/2983323.2983345","DOIUrl":null,"url":null,"abstract":"It is still challenging in telecommunication (telco) industry to accurately locate mobile devices (MDs) at city-scale using the measurement report (MR) data, which measure parameters of radio signal strengths when MDs connect with base stations (BSs) in telco networks for making/receiving calls or mobile broadband (MBB) services. In this paper, we find that the widely-used location based services (LBSs) have accumulated lots of over-the-top (OTT) global positioning system (GPS) data in telco networks, which can be automatically used as training labels for learning accurate MR-based positioning systems. Benefiting from these telco big data, we deploy a context-aware coarse-to-fine regression (CCR) model in Spark/Hadoop-based telco big data platform for city-scale localization of MDs with two novel contributions. First, we design map-matching and interpolation algorithms to encode contextual information of road networks. Second, we build a two-layer regression model to capture coarse-to-fine contextual features in a short time window for improved localization performance. In our experiments, we collect 108 GPS-associated MR records in the centroid of Shanghai city with 12 x 11 square kilometers for 30 days, and measure four important properties of real-world MR data related to localization errors: stability, sensitivity, uncertainty and missing values. The proposed CCR works well under different properties of MR data and achieves a mean error of 110m and a median error of $80m$, outperforming the state-of-art range-based and fingerprinting localization methods.","PeriodicalId":250808,"journal":{"name":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"35","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM International on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/2983323.2983345","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 35
Abstract
It is still challenging in telecommunication (telco) industry to accurately locate mobile devices (MDs) at city-scale using the measurement report (MR) data, which measure parameters of radio signal strengths when MDs connect with base stations (BSs) in telco networks for making/receiving calls or mobile broadband (MBB) services. In this paper, we find that the widely-used location based services (LBSs) have accumulated lots of over-the-top (OTT) global positioning system (GPS) data in telco networks, which can be automatically used as training labels for learning accurate MR-based positioning systems. Benefiting from these telco big data, we deploy a context-aware coarse-to-fine regression (CCR) model in Spark/Hadoop-based telco big data platform for city-scale localization of MDs with two novel contributions. First, we design map-matching and interpolation algorithms to encode contextual information of road networks. Second, we build a two-layer regression model to capture coarse-to-fine contextual features in a short time window for improved localization performance. In our experiments, we collect 108 GPS-associated MR records in the centroid of Shanghai city with 12 x 11 square kilometers for 30 days, and measure four important properties of real-world MR data related to localization errors: stability, sensitivity, uncertainty and missing values. The proposed CCR works well under different properties of MR data and achieves a mean error of 110m and a median error of $80m$, outperforming the state-of-art range-based and fingerprinting localization methods.