{"title":"Online Energy-Efficient Power Control in Wireless Networks by Deep Neural Networks","authors":"A. Zappone, M. Debbah, Z. Altman","doi":"10.1109/SPAWC.2018.8445857","DOIUrl":null,"url":null,"abstract":"The work describes how deep learning by artificial neural networks (ANNs) enables online power allocation for energy efficiency maximization in wireless interference networks. A deep ANN architecture is proposed and trained to take as input the network communication channels and to output suitable power allocations. It is shown that this approach requires a much lower computational complexity compared to traditional optimization-oriented approaches, dispensing with the need of solving the optimization problem anew in each channel coherence time. Despite the lower complexity, numerical results show that a properly trained ANN achieves similar performance as more traditional optimization-oriented methods.","PeriodicalId":240036,"journal":{"name":"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"255 11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"34","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2018.8445857","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 34
Abstract
The work describes how deep learning by artificial neural networks (ANNs) enables online power allocation for energy efficiency maximization in wireless interference networks. A deep ANN architecture is proposed and trained to take as input the network communication channels and to output suitable power allocations. It is shown that this approach requires a much lower computational complexity compared to traditional optimization-oriented approaches, dispensing with the need of solving the optimization problem anew in each channel coherence time. Despite the lower complexity, numerical results show that a properly trained ANN achieves similar performance as more traditional optimization-oriented methods.