Temporal correlation compensation (whitening) of the fMRI data using Akaike Information Criterion

R. Maximiano, J. Sanches
{"title":"Temporal correlation compensation (whitening) of the fMRI data using Akaike Information Criterion","authors":"R. Maximiano, J. Sanches","doi":"10.1109/ENBENG.2011.6026085","DOIUrl":null,"url":null,"abstract":"This work concerns the noise present in BOLD-fMRI (Blood-Oxygen-Level-Dependent: functional Magnetic Resonance Imaging, a technique that evaluates the levels of oxygen in the blood vessels of the brain. It is known that there is a temporal correlation present in the BOLD-fMRI's noise signal, complicating the estimation of the active regions of the brain due to an external stimulus. Using SPM-GLM methods (Statistical Parametric Mapping — General Linear Methods), denoised signal and response coefficients from all voxels (Volume Element) are estimated. The comparison between both signals gives an approximation of its noise signal. Using Akaike Information Criterion, this technique estimates the best model's order to decorrelate the noise and pre-whiten. Moreover, this algorithm recalculates new unknown parameters until a minimum threshold is achieved. Final results obtained were analyzed and concluded to have less false-positives, allowing a better definition of the real active regions.","PeriodicalId":206538,"journal":{"name":"1st Portuguese Biomedical Engineering Meeting","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"1st Portuguese Biomedical Engineering Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ENBENG.2011.6026085","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This work concerns the noise present in BOLD-fMRI (Blood-Oxygen-Level-Dependent: functional Magnetic Resonance Imaging, a technique that evaluates the levels of oxygen in the blood vessels of the brain. It is known that there is a temporal correlation present in the BOLD-fMRI's noise signal, complicating the estimation of the active regions of the brain due to an external stimulus. Using SPM-GLM methods (Statistical Parametric Mapping — General Linear Methods), denoised signal and response coefficients from all voxels (Volume Element) are estimated. The comparison between both signals gives an approximation of its noise signal. Using Akaike Information Criterion, this technique estimates the best model's order to decorrelate the noise and pre-whiten. Moreover, this algorithm recalculates new unknown parameters until a minimum threshold is achieved. Final results obtained were analyzed and concluded to have less false-positives, allowing a better definition of the real active regions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于Akaike信息准则的fMRI数据时间相关补偿(白化)
这项工作涉及BOLD-fMRI(血氧水平依赖:功能性磁共振成像)中存在的噪音,这是一种评估大脑血管中氧水平的技术。众所周知,BOLD-fMRI的噪声信号存在时间相关性,使外界刺激对大脑活动区域的估计复杂化。使用SPM-GLM方法(统计参数映射-一般线性方法),估计来自所有体素(体元)的去噪信号和响应系数。两种信号的比较给出了其噪声信号的近似值。该方法利用赤池信息准则,估计出最佳模型去相关和预白化的顺序。此外,该算法重新计算新的未知参数,直到达到最小阈值。对得到的最终结果进行分析并得出假阳性较少的结论,从而可以更好地定义真实的活动区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
neuroCornea — Diabetic peripheral neuropathy early diagnosis and follow-up through in vivo automatic analysis of corneal nerves morphology Legionella: Bioactive nano-filters for air purification systems Laser Doppler flowmeters for microcirculation measurements A cardiac signal monitoring and processing system OMICS approaches to reveal Burkholderia cenocepacia adaptive strategies to long-term residence in the lungs of cystic fibrosis patients under antibiotic therapy
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1