Fake News Detection Using XLNet Fine-Tuning Model

Ashok Kumar J, Tina Esther Trueman, E. Cambria
{"title":"Fake News Detection Using XLNet Fine-Tuning Model","authors":"Ashok Kumar J, Tina Esther Trueman, E. Cambria","doi":"10.1109/iccica52458.2021.9697269","DOIUrl":null,"url":null,"abstract":"In recent years, the traditional way of getting news from a Television, news paper, or national newscast is gone. Today, online social media provides the fastest news content for people. This, however, brings about the problem of fake news. In fact, fake news detection is one of the challenging tasks in natural language processing to differentiate between real (or true) and fake (or false) news content. In this paper, we propose an XLNet fine-tuning model to predict fake news in a multi-class and binary class problem. Our results show that the proposed XLNet model comparatively achieves a better result than the existing state-of-the-art models.","PeriodicalId":327193,"journal":{"name":"2021 International Conference on Computational Intelligence and Computing Applications (ICCICA)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Computational Intelligence and Computing Applications (ICCICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/iccica52458.2021.9697269","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

Abstract

In recent years, the traditional way of getting news from a Television, news paper, or national newscast is gone. Today, online social media provides the fastest news content for people. This, however, brings about the problem of fake news. In fact, fake news detection is one of the challenging tasks in natural language processing to differentiate between real (or true) and fake (or false) news content. In this paper, we propose an XLNet fine-tuning model to predict fake news in a multi-class and binary class problem. Our results show that the proposed XLNet model comparatively achieves a better result than the existing state-of-the-art models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于XLNet微调模型的假新闻检测
近年来,从电视、报纸或全国新闻广播中获取新闻的传统方式已经消失了。今天,在线社交媒体为人们提供了最快的新闻内容。然而,这带来了假新闻的问题。事实上,假新闻检测是自然语言处理中区分真实(或真实)和虚假(或虚假)新闻内容的具有挑战性的任务之一。在本文中,我们提出了一个XLNet微调模型来预测多类和二元类问题中的假新闻。我们的结果表明,所提出的XLNet模型相对于现有的最先进模型取得了更好的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Use of Body Sensors for Implementation of Human Activity Recognition Performance Prediction of Product/Person Using Real Time Twitter Tweets Survey on Centric Data Protection Method for Cloud Storage Application Twitter Sentiment Analysis using Natural Language Processing Crime Visualization using A Novel GIS-Based Framework
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1