Gaussian process-based visual pursuit control with unknown target motion learning in three dimensions

Marco Omainska, J. Yamauchi, Thomas Beckers, T. Hatanaka, S. Hirche, M. Fujita
{"title":"Gaussian process-based visual pursuit control with unknown target motion learning in three dimensions","authors":"Marco Omainska, J. Yamauchi, Thomas Beckers, T. Hatanaka, S. Hirche, M. Fujita","doi":"10.1080/18824889.2021.1936855","DOIUrl":null,"url":null,"abstract":"In this paper, we propose an observer-based visual pursuit control integrating three-dimensional target motion learning by Gaussian Process Regression (GPR). We consider a situation where a visual sensor equipped rigid body pursuits a target rigid body whose velocity is unknown but dependent on the target's pose. We estimate the pose from visual information and propose a Gaussian Process (GP) model to predict the target velocity from the pose estimate. We analyse stability of the proposed control by showing that estimation and control errors are ultimately bounded with high probability. Finally, simulations illustrate the performance of the proposed control schemes even if the visual measurement is corrupted by noise.","PeriodicalId":413922,"journal":{"name":"SICE journal of control, measurement, and system integration","volume":"74 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SICE journal of control, measurement, and system integration","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/18824889.2021.1936855","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

In this paper, we propose an observer-based visual pursuit control integrating three-dimensional target motion learning by Gaussian Process Regression (GPR). We consider a situation where a visual sensor equipped rigid body pursuits a target rigid body whose velocity is unknown but dependent on the target's pose. We estimate the pose from visual information and propose a Gaussian Process (GP) model to predict the target velocity from the pose estimate. We analyse stability of the proposed control by showing that estimation and control errors are ultimately bounded with high probability. Finally, simulations illustrate the performance of the proposed control schemes even if the visual measurement is corrupted by noise.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于高斯过程的三维未知目标运动学习视觉追踪控制
本文提出了一种基于观测器的视觉追踪控制方法,该方法将三维目标运动学习与高斯过程回归(GPR)相结合。我们考虑一个装有刚体的视觉传感器跟踪一个速度未知但依赖于目标位姿的目标刚体的情况。我们从视觉信息中估计姿态,并提出了一个高斯过程(GP)模型来从姿态估计中预测目标速度。我们通过证明估计和控制误差最终以高概率有界来分析所提出的控制的稳定性。最后,通过仿真验证了在视觉测量受到噪声干扰的情况下所提出的控制方案的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.20
自引率
0.00%
发文量
0
期刊最新文献
Aging-induced degradation in tracking performance in three-dimensional movement Transfer of squeezed coherent state using quantum teleportation of continuous variables Game-theoretic modelling and analysis of strategic investments for PV and shared battery Multiple local controls integrated by RMPs for FCP-based hexapod walking Activity scenarios simulation by discovering knowledge through activities of daily living datasets
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1