Hands Detection Based on Statistical Learning

Hui Li, Lei Yang, Xiaoyu Wu, Jun Zhai
{"title":"Hands Detection Based on Statistical Learning","authors":"Hui Li, Lei Yang, Xiaoyu Wu, Jun Zhai","doi":"10.1109/ISCID.2012.208","DOIUrl":null,"url":null,"abstract":"This paper proposes a hand detection methodbased on statistical learning training way. Using Microsoft's Kinect sensor, to get the depth information. Through the analysis of the characetristics of hands, put out a kind of new features for statistical learning which approximate with Harr-like feature. The new feature is good at describing complex hand shape degeneration. With the help of Adaboost statistical learning, gets the training model. Experiment results demonstrate that using the new features with Adaboost algorithm can achieve more rapid and robust hands detection system.","PeriodicalId":246432,"journal":{"name":"2012 Fifth International Symposium on Computational Intelligence and Design","volume":"73 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 Fifth International Symposium on Computational Intelligence and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCID.2012.208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper proposes a hand detection methodbased on statistical learning training way. Using Microsoft's Kinect sensor, to get the depth information. Through the analysis of the characetristics of hands, put out a kind of new features for statistical learning which approximate with Harr-like feature. The new feature is good at describing complex hand shape degeneration. With the help of Adaboost statistical learning, gets the training model. Experiment results demonstrate that using the new features with Adaboost algorithm can achieve more rapid and robust hands detection system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于统计学习的手部检测
本文提出了一种基于统计学习训练方法的手部检测方法。使用微软的Kinect传感器,获取深度信息。通过对手部特征的分析,提出了一种近似于Harr-like特征的统计学习新特征。新的特征可以很好地描述复杂的手形退化。借助Adaboost统计学习,得到训练模型。实验结果表明,将新特征与Adaboost算法相结合,可以实现更加快速、鲁棒的手部检测系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Improved Algorithm of Slotted-ALOHA Based on Multichannel Statistics Research for Traceability Model of Material Supply Quality in Construction Project Auto-Tuning Mapping Strategy for Parallel CFD Program An Algorithm of Dim and Small Target Detection Based on Wavelet Transform and Image Fusion The Application of Mi200E in PLC Communication System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1