Partitioning and transcription of broadcast news data

J. Gauvain, L. Lamel, G. Adda
{"title":"Partitioning and transcription of broadcast news data","authors":"J. Gauvain, L. Lamel, G. Adda","doi":"10.21437/ICSLP.1998-618","DOIUrl":null,"url":null,"abstract":"Radio and television broadcasts consist of a continuous stream of data comprised of segments of different linguistic and acoustic natures, which poses challenges for transcription. In this paper we report on our recent work in transcribing broadcast news data[2, 4], including the problem of partitioning the data into homogeneous segments prior to word recognition. Gaussian mixture models are used to identify speech and non-speech segments. A maximum-likelihood segmentation/clustering process is then applied to the speech segments using GMMs and an agglomerative clustering algorithm. The clustered segments are then labeled according to bandwidth and gender. The recog-nizer is a continuous mixture density, tied-state cross-word context-dependent HMM system with a 65k trigram language model. Decoding is carried out inthree passes, witha final pass incorporating cluster-based test-set MLLR adaptation. The overall word transcription error on the Nov’97 unpartitioned evaluation test data was 18.5%.","PeriodicalId":117113,"journal":{"name":"5th International Conference on Spoken Language Processing (ICSLP 1998)","volume":"189 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1998-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"182","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"5th International Conference on Spoken Language Processing (ICSLP 1998)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21437/ICSLP.1998-618","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 182

Abstract

Radio and television broadcasts consist of a continuous stream of data comprised of segments of different linguistic and acoustic natures, which poses challenges for transcription. In this paper we report on our recent work in transcribing broadcast news data[2, 4], including the problem of partitioning the data into homogeneous segments prior to word recognition. Gaussian mixture models are used to identify speech and non-speech segments. A maximum-likelihood segmentation/clustering process is then applied to the speech segments using GMMs and an agglomerative clustering algorithm. The clustered segments are then labeled according to bandwidth and gender. The recog-nizer is a continuous mixture density, tied-state cross-word context-dependent HMM system with a 65k trigram language model. Decoding is carried out inthree passes, witha final pass incorporating cluster-based test-set MLLR adaptation. The overall word transcription error on the Nov’97 unpartitioned evaluation test data was 18.5%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
广播新闻数据的分割和转录
广播和电视广播由由不同语言和声学性质的片段组成的连续数据流组成,这对转录提出了挑战。在本文中,我们报告了我们最近在广播新闻数据转录方面的工作[2,4],包括在单词识别之前将数据划分为同质片段的问题。高斯混合模型用于识别语音和非语音片段。然后使用gmm和聚类算法对语音片段进行最大似然分割/聚类处理。然后根据带宽和性别对聚类段进行标记。该识别器是一个连续混合密度,绑定状态的交叉词上下文依赖HMM系统,具有65k的三组语言模型。解码分三次进行,最后一次采用基于聚类的测试集MLLR适应。在97年11月的未分割评价测试数据上,总的单词转录误差为18.5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assimilation of place in Japanese and dutch Articulatory analysis using a codebook for articulatory based low bit-rate speech coding Phonetic and phonological characteristics of paralinguistic information in spoken Japanese HMM-based visual speech recognition using intensity and location normalization Speech recognition via phonetically featured syllables
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1