Minimizing data center SLA violations and power consumption via hybrid resource provisioning

Anshul Gandhi, Yuan Chen, D. Gmach, M. Arlitt, M. Marwah
{"title":"Minimizing data center SLA violations and power consumption via hybrid resource provisioning","authors":"Anshul Gandhi, Yuan Chen, D. Gmach, M. Arlitt, M. Marwah","doi":"10.1109/IGCC.2011.6008611","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach to correctly allocate resources in data centers, such that SLA violations and energy consumption are minimized. Our approach first analyzes historical workload traces to identify long-term patterns that establish a “base” workload. It then employs two techniques to dynamically allocate capacity: predictive provisioning handles the estimated base workload at coarse time scales (e.g., hours or days) and reactive provisioning handles any excess workload at finer time scales (e.g., minutes). The combination of predictive and reactive provisioning achieves a significant improvement in meeting SLAs, conserving energy, and reducing provisioning costs. We implement and evaluate our approach using traces from four production systems. The results show that our approach can provide up to 35% savings in power consumption and reduce SLA violations by as much as 21% compared to existing techniques, while avoiding frequent power cycling of servers.","PeriodicalId":306876,"journal":{"name":"2011 International Green Computing Conference and Workshops","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"129","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Green Computing Conference and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGCC.2011.6008611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 129

Abstract

This paper presents a novel approach to correctly allocate resources in data centers, such that SLA violations and energy consumption are minimized. Our approach first analyzes historical workload traces to identify long-term patterns that establish a “base” workload. It then employs two techniques to dynamically allocate capacity: predictive provisioning handles the estimated base workload at coarse time scales (e.g., hours or days) and reactive provisioning handles any excess workload at finer time scales (e.g., minutes). The combination of predictive and reactive provisioning achieves a significant improvement in meeting SLAs, conserving energy, and reducing provisioning costs. We implement and evaluate our approach using traces from four production systems. The results show that our approach can provide up to 35% savings in power consumption and reduce SLA violations by as much as 21% compared to existing techniques, while avoiding frequent power cycling of servers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过混合资源配置最小化数据中心SLA违规和功耗
本文提出了一种正确分配数据中心资源的新方法,使SLA违规和能耗最小化。我们的方法首先分析历史工作负载跟踪,以确定建立“基本”工作负载的长期模式。然后,它使用两种技术来动态分配容量:预测性供应处理粗时间尺度(例如,小时或天)估计的基本工作负载,而反应性供应处理细时间尺度(例如,分钟)的任何多余工作负载。预测性和反应性配置的结合在满足sla、节约能源和降低配置成本方面取得了显著的改进。我们使用来自四个生产系统的跟踪来实施和评估我们的方法。结果表明,与现有技术相比,我们的方法可以节省高达35%的功耗,并减少多达21%的SLA违规,同时避免服务器频繁的电源循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
VLSI testing and test power Leakage-aware Kalman filter for accurate temperature tracking Practical performance prediction under Dynamic Voltage Frequency Scaling CACM: Current-aware capacity management in consolidated server enclosures Gureen Game: An energy-efficient QoS control scheme for wireless sensor networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1