Anshul Gandhi, Yuan Chen, D. Gmach, M. Arlitt, M. Marwah
{"title":"Minimizing data center SLA violations and power consumption via hybrid resource provisioning","authors":"Anshul Gandhi, Yuan Chen, D. Gmach, M. Arlitt, M. Marwah","doi":"10.1109/IGCC.2011.6008611","DOIUrl":null,"url":null,"abstract":"This paper presents a novel approach to correctly allocate resources in data centers, such that SLA violations and energy consumption are minimized. Our approach first analyzes historical workload traces to identify long-term patterns that establish a “base” workload. It then employs two techniques to dynamically allocate capacity: predictive provisioning handles the estimated base workload at coarse time scales (e.g., hours or days) and reactive provisioning handles any excess workload at finer time scales (e.g., minutes). The combination of predictive and reactive provisioning achieves a significant improvement in meeting SLAs, conserving energy, and reducing provisioning costs. We implement and evaluate our approach using traces from four production systems. The results show that our approach can provide up to 35% savings in power consumption and reduce SLA violations by as much as 21% compared to existing techniques, while avoiding frequent power cycling of servers.","PeriodicalId":306876,"journal":{"name":"2011 International Green Computing Conference and Workshops","volume":"99 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"129","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Green Computing Conference and Workshops","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGCC.2011.6008611","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 129
Abstract
This paper presents a novel approach to correctly allocate resources in data centers, such that SLA violations and energy consumption are minimized. Our approach first analyzes historical workload traces to identify long-term patterns that establish a “base” workload. It then employs two techniques to dynamically allocate capacity: predictive provisioning handles the estimated base workload at coarse time scales (e.g., hours or days) and reactive provisioning handles any excess workload at finer time scales (e.g., minutes). The combination of predictive and reactive provisioning achieves a significant improvement in meeting SLAs, conserving energy, and reducing provisioning costs. We implement and evaluate our approach using traces from four production systems. The results show that our approach can provide up to 35% savings in power consumption and reduce SLA violations by as much as 21% compared to existing techniques, while avoiding frequent power cycling of servers.