Sparse Polynomial Interpolation With Arbitrary Orthogonal Polynomial Bases

E. Imamoglu, E. Kaltofen, Zhengfeng Yang
{"title":"Sparse Polynomial Interpolation With Arbitrary Orthogonal Polynomial Bases","authors":"E. Imamoglu, E. Kaltofen, Zhengfeng Yang","doi":"10.1145/3208976.3208999","DOIUrl":null,"url":null,"abstract":"An algorithm for interpolating a polynomial f from evaluation points whose running time depends on the sparsity t of the polynomial when it is represented as a sum of t Chebyshev Polynomials of the First Kind with non-zero scalar coefficients is given by Lakshman Y. N. and Saunders [SIAM J. Comput., vol. 24, nr. 2 (1995)]; Kaltofen and Lee [JSC, vol. 36, nr. 3--4 (2003)] analyze a randomized early termination version which computes the sparsity t. Those algorithms mirror Prony's algorithm for the standard power basis to the Chebyshev Basis of the First Kind. An alternate algorithm by Arnold's and Kaltofen's [Proc. ISSAC 2015, Sec. 4] uses Prony's original algorithm for standard power terms. Here we give sparse interpolation algorithms for generalized Chebyshev polynomials, which include the Chebyshev Bases of the Second, Third and Fourth Kind. Our algorithms also reduce to Prony's algorithm. If given on input a bound B >= t for the sparsity, our new algorithms deterministically recover the sparse representation in the First, Second, Third and Fourth Kind Chebyshev representation from exactly t + B evaluations. Finally, we generalize our algorithms to bases whose Chebyshev recurrences have parametric scalars. We also show how to compute those parameter values which optimize the sparsity of the representation in the corresponding basis, similar to computing a sparsest shift.","PeriodicalId":105762,"journal":{"name":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2018 ACM International Symposium on Symbolic and Algebraic Computation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3208976.3208999","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

An algorithm for interpolating a polynomial f from evaluation points whose running time depends on the sparsity t of the polynomial when it is represented as a sum of t Chebyshev Polynomials of the First Kind with non-zero scalar coefficients is given by Lakshman Y. N. and Saunders [SIAM J. Comput., vol. 24, nr. 2 (1995)]; Kaltofen and Lee [JSC, vol. 36, nr. 3--4 (2003)] analyze a randomized early termination version which computes the sparsity t. Those algorithms mirror Prony's algorithm for the standard power basis to the Chebyshev Basis of the First Kind. An alternate algorithm by Arnold's and Kaltofen's [Proc. ISSAC 2015, Sec. 4] uses Prony's original algorithm for standard power terms. Here we give sparse interpolation algorithms for generalized Chebyshev polynomials, which include the Chebyshev Bases of the Second, Third and Fourth Kind. Our algorithms also reduce to Prony's algorithm. If given on input a bound B >= t for the sparsity, our new algorithms deterministically recover the sparse representation in the First, Second, Third and Fourth Kind Chebyshev representation from exactly t + B evaluations. Finally, we generalize our algorithms to bases whose Chebyshev recurrences have parametric scalars. We also show how to compute those parameter values which optimize the sparsity of the representation in the corresponding basis, similar to computing a sparsest shift.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
任意正交多项式基稀疏多项式插值
Lakshman Y. N. and Saunders [SIAM J. Comput]给出了一种从评价点插值多项式f的算法,当多项式被表示为t个非零标量系数的第一类Chebyshev多项式的和时,其运行时间取决于多项式的稀疏性t。,第24卷,第2期(1995)];Kaltofen和Lee [JSC, vol. 36, nr. 3—4(2003)]分析了一个随机的早期终止版本,该版本计算稀疏性t。这些算法将proony的标准功率基算法镜像到第一类切比雪夫基。Arnold和Kaltofen的替代算法[Proc. ISSAC 2015, Sec 4]使用proony的原始算法来处理标准功率项。本文给出了广义Chebyshev多项式(包括第二类、第三类和第四类Chebyshev基)的稀疏插值算法。我们的算法也简化为普罗尼算法。如果给定一个边界B >= t的稀疏性,我们的新算法确定性地从t + B次求值中恢复第一、第二、第三和第四类Chebyshev表示中的稀疏表示。最后,我们将我们的算法推广到具有参数标量的切比雪夫递归的基。我们还展示了如何计算那些参数值,这些参数值可以在相应的基中优化表示的稀疏性,类似于计算最稀疏移位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Constructive Arithmetics in Ore Localizations with Enough Commutativity Extending the GVW Algorithm to Local Ring Comparison of CAD-based Methods for Computation of Rational Function Limits Polynomial Equivalence Problems for Sum of Affine Powers Fast Straightening Algorithm for Bracket Polynomials Based on Tableau Manipulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1