Identifying the Topic-Specific Influential Users Using SLM

M. Shalaby, Ahmed Rafea
{"title":"Identifying the Topic-Specific Influential Users Using SLM","authors":"M. Shalaby, Ahmed Rafea","doi":"10.1109/ACLING.2015.24","DOIUrl":null,"url":null,"abstract":"Social Influence can be described as the ability to have an effect on the thoughts or actions of others. The objective of this research is to investigate the use of language in detecting the influential users in a specific topic on Twitter. From a collection of tweets matching a specified query, we want to detect the influential users from the tweets' text. The study investigates the Arabic Egyptian dialect and if it can be used for detecting the author's influence. Using a Statistical Language Model, we found a correlation between the users' average Retweets counts and their tweets' perplexity, consolidating the hypothesis that SLM can be trained to detect the highly retweeted tweets. However, the use of the perplexity for identifying influential users resulted in low precision values. The simplistic approach carried out did not produce good results. There is still work to be done for the SLM to be used for identifying influential users.","PeriodicalId":404268,"journal":{"name":"2015 First International Conference on Arabic Computational Linguistics (ACLing)","volume":"87 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 First International Conference on Arabic Computational Linguistics (ACLing)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACLING.2015.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Social Influence can be described as the ability to have an effect on the thoughts or actions of others. The objective of this research is to investigate the use of language in detecting the influential users in a specific topic on Twitter. From a collection of tweets matching a specified query, we want to detect the influential users from the tweets' text. The study investigates the Arabic Egyptian dialect and if it can be used for detecting the author's influence. Using a Statistical Language Model, we found a correlation between the users' average Retweets counts and their tweets' perplexity, consolidating the hypothesis that SLM can be trained to detect the highly retweeted tweets. However, the use of the perplexity for identifying influential users resulted in low precision values. The simplistic approach carried out did not produce good results. There is still work to be done for the SLM to be used for identifying influential users.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用SLM识别特定主题的有影响力用户
社会影响力可以描述为对他人的思想或行为产生影响的能力。本研究的目的是调查语言在Twitter上检测特定主题中有影响力用户的使用情况。从匹配指定查询的tweet集合中,我们希望从tweet的文本中检测有影响力的用户。本研究考察了阿拉伯埃及方言,以及是否可以用它来检测作者的影响。使用统计语言模型,我们发现用户的平均转发数与他们的推文困惑度之间存在相关性,巩固了SLM可以被训练来检测高转发推文的假设。然而,使用困惑度来识别有影响力的用户导致精度值较低。这种简单化的做法没有产生好的结果。要利用SLM确定有影响力的用户,仍有许多工作要做。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Which Configuration Works Best? An Experimental Study on Supervised Arabic Twitter Sentiment Analysis Increasing the Accuracy of Opinion Mining in Arabic Tunisian Arabic aeb Wordnet: Current State and Future Extensions A Named Entities Recognition System for Modern Standard Arabic using Rule-Based Approach Transducers Cascades for an Automatic Recognition of Arabic Named Entities in Order to Establish Links to Free Resources
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1