Automatic Test Configuration and Pattern Generation (ATCPG) for Neuromorphic Chips

I. Chiu, Xin-Ping Chen, Jennifer Shueh-Inn Hu, C. Li
{"title":"Automatic Test Configuration and Pattern Generation (ATCPG) for Neuromorphic Chips","authors":"I. Chiu, Xin-Ping Chen, Jennifer Shueh-Inn Hu, C. Li","doi":"10.1145/3508352.3549422","DOIUrl":null,"url":null,"abstract":"The demand for low-power, high-performance neuromorphic chips is increasing. However, conventional testing is not applicable to neuromorphic chips due to three reasons: (1) lack of scan DfT, (2) stochastic characteristic, and (3) configurable functionality. In this paper, we present an automatic test configuration and pattern generation (ATCPG) method for testing a configurable stochastic neuromorphic chip without using scan DfT. We use machine learning to generate test configurations. Then, we apply a modified fast gradient sign method to generate test patterns. Finally, we determine test repetitions with statistical power of test. We conduct experiments on one of the neuromorphic architectures, spiking neural network, to evaluate the effectiveness of our ATCPG. The experimental results show that our ATCPG can achieve 100% fault coverage for the five fault models we use. For testing a 3-layer model at 0.05 significant level, we produce 5 test configurations and 67 test patterns. The average test repetitions of neuron faults and synapse faults are 2,124 and 4,557, respectively. Besides, our simulation results show that the overkill matched our significance level perfectly.","PeriodicalId":270592,"journal":{"name":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM International Conference On Computer Aided Design (ICCAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3508352.3549422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The demand for low-power, high-performance neuromorphic chips is increasing. However, conventional testing is not applicable to neuromorphic chips due to three reasons: (1) lack of scan DfT, (2) stochastic characteristic, and (3) configurable functionality. In this paper, we present an automatic test configuration and pattern generation (ATCPG) method for testing a configurable stochastic neuromorphic chip without using scan DfT. We use machine learning to generate test configurations. Then, we apply a modified fast gradient sign method to generate test patterns. Finally, we determine test repetitions with statistical power of test. We conduct experiments on one of the neuromorphic architectures, spiking neural network, to evaluate the effectiveness of our ATCPG. The experimental results show that our ATCPG can achieve 100% fault coverage for the five fault models we use. For testing a 3-layer model at 0.05 significant level, we produce 5 test configurations and 67 test patterns. The average test repetitions of neuron faults and synapse faults are 2,124 and 4,557, respectively. Besides, our simulation results show that the overkill matched our significance level perfectly.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经形态芯片的自动测试配置和模式生成(ATCPG
对低功耗、高性能神经形态芯片的需求正在增加。然而,由于以下三个原因,常规测试并不适用于神经形态芯片:(1)缺乏扫描DfT,(2)随机特性,(3)可配置功能。在本文中,我们提出了一种自动测试配置和模式生成(ATCPG)方法来测试一个可配置的随机神经形态芯片,而不使用扫描DfT。我们使用机器学习来生成测试配置。然后,我们应用一种改进的快速梯度符号方法来生成测试模式。最后,我们用检验的统计能力来确定检验的重复次数。我们在其中一种神经形态架构——脉冲神经网络上进行了实验,以评估我们的ATCPG的有效性。实验结果表明,对于我们使用的5种故障模型,我们的ATCPG可以达到100%的故障覆盖率。为了在0.05显著水平上测试三层模型,我们产生了5个测试配置和67个测试模式。神经元故障和突触故障的平均测试次数分别为2124次和4557次。此外,我们的仿真结果表明,过度杀伤与我们的显著性水平完全匹配。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Squeezing Accumulators in Binary Neural Networks for Extremely Resource-Constrained Applications Numerically-Stable and Highly-Scalable Parallel LU Factorization for Circuit Simulation Towards High Performance and Accurate BNN Inference on FPGA with Structured Fine-grained Pruning RT-NeRF: Real-Time On-Device Neural Radiance Fields Towards Immersive AR/VR Rendering Design and Technology Co-optimization Utilizing Multi-bit Flip-flop Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1