Multi-criteria malleable task management for hybrid-cloud platforms

E. Caron, Marcos Dias de Assunção
{"title":"Multi-criteria malleable task management for hybrid-cloud platforms","authors":"E. Caron, Marcos Dias de Assunção","doi":"10.1109/CLOUDTECH.2016.7847717","DOIUrl":null,"url":null,"abstract":"The use of large distributed computing infrastructure is a means to address the ever increasing resource demands of scientific and commercial applications. The scale of current large-scale computing infrastructures and their heterogeneity make scheduling applications an increasingly complex task. Cloud computing minimises the heterogeneity by using virtualisation mechanisms, but poses new challenges to middleware developers, such as the management of virtualisation, elasticity and economic models. In this context, this work proposes algorithms for efficient scheduling and execution of malleable computing tasks with high granularity while taking into account multiple optimisation criteria such as resource cost and computation time. We focus on hybrid platforms that comprise both clusters and cloud providers. We define and formalise the main aspects of the problem, introduce the difference between local and global scheduling algorithms and evaluate their efficiency using discrete-event simulation.","PeriodicalId":133495,"journal":{"name":"2016 2nd International Conference on Cloud Computing Technologies and Applications (CloudTech)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 2nd International Conference on Cloud Computing Technologies and Applications (CloudTech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CLOUDTECH.2016.7847717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

The use of large distributed computing infrastructure is a means to address the ever increasing resource demands of scientific and commercial applications. The scale of current large-scale computing infrastructures and their heterogeneity make scheduling applications an increasingly complex task. Cloud computing minimises the heterogeneity by using virtualisation mechanisms, but poses new challenges to middleware developers, such as the management of virtualisation, elasticity and economic models. In this context, this work proposes algorithms for efficient scheduling and execution of malleable computing tasks with high granularity while taking into account multiple optimisation criteria such as resource cost and computation time. We focus on hybrid platforms that comprise both clusters and cloud providers. We define and formalise the main aspects of the problem, introduce the difference between local and global scheduling algorithms and evaluate their efficiency using discrete-event simulation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
混合云平台的多准则延展性任务管理
使用大型分布式计算基础设施是解决科学和商业应用程序不断增长的资源需求的一种手段。当前大规模计算基础设施的规模及其异构性使得调度应用程序成为一项日益复杂的任务。云计算通过使用虚拟化机制将异构性最小化,但是对中间件开发人员提出了新的挑战,例如虚拟化、弹性和经济模型的管理。在此背景下,本工作提出了高效调度和执行高粒度可延展计算任务的算法,同时考虑到资源成本和计算时间等多个优化标准。我们专注于混合平台,包括集群和云提供商。我们定义和形式化了问题的主要方面,介绍了局部和全局调度算法之间的区别,并使用离散事件模拟评估了它们的效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
ECC certificate for authentication in cloud-based RFID Taking account of trust when adopting cloud computing architecture New technique for face recognition based on Singular Value Decomposition (SVD) A collaborative framework for intrusion detection (C-NIDS) in Cloud computing Cloud security and privacy model for providing secure cloud services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1