Adapting MapReduce for HPC environments

Zacharia Fadika, Elif Dede, M. Govindaraju, L. Ramakrishnan
{"title":"Adapting MapReduce for HPC environments","authors":"Zacharia Fadika, Elif Dede, M. Govindaraju, L. Ramakrishnan","doi":"10.1145/1996130.1996166","DOIUrl":null,"url":null,"abstract":"MapReduce is increasingly gaining popularity as a programming model for use in large-scale distributed processing. The model is most widely used when implemented using the Hadoop Distributed File System (HDFS). The use of the HDFS, however, precludes the direct applicability of the model to HPC environments, which use high performance distributed file systems. In such distributed environments, the MapReduce model can rarely make use of full resources, as local disks may not be available for data placement on all the nodes. This work proposes a MapReduce implementation and design choices directly suitable for such HPC environments.","PeriodicalId":330072,"journal":{"name":"IEEE International Symposium on High-Performance Parallel Distributed Computing","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE International Symposium on High-Performance Parallel Distributed Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1996130.1996166","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

MapReduce is increasingly gaining popularity as a programming model for use in large-scale distributed processing. The model is most widely used when implemented using the Hadoop Distributed File System (HDFS). The use of the HDFS, however, precludes the direct applicability of the model to HPC environments, which use high performance distributed file systems. In such distributed environments, the MapReduce model can rarely make use of full resources, as local disks may not be available for data placement on all the nodes. This work proposes a MapReduce implementation and design choices directly suitable for such HPC environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
为HPC环境调整MapReduce
MapReduce作为一种用于大规模分布式处理的编程模型越来越受欢迎。该模型在使用HDFS (Hadoop Distributed File System)实现时使用最为广泛。然而,HDFS的使用阻碍了该模型直接适用于使用高性能分布式文件系统的HPC环境。在这种分布式环境中,MapReduce模型很少能够充分利用资源,因为本地磁盘可能无法用于在所有节点上放置数据。这项工作提出了一个MapReduce实现和设计选择,直接适用于这种高性能计算环境。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Data filtering for scalable high-dimensional k-NN search on multicore systems Communication-driven scheduling for virtual clusters in cloud When paxos meets erasure code: reduce network and storage cost in state machine replication Domino: an incremental computing framework in cloud with eventual synchronization TOP-PIM: throughput-oriented programmable processing in memory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1