A Collectional Data Model for Scientific Workflow Composition

Xubo Fei, Shiyong Lu
{"title":"A Collectional Data Model for Scientific Workflow Composition","authors":"Xubo Fei, Shiyong Lu","doi":"10.1109/ICWS.2010.93","DOIUrl":null,"url":null,"abstract":"Modern scientific computations are usually data intensive, involving large-scale, heterogeneous and structured scientific datasets. Modeling, organizing, and processing scientific data have become key challenges for scientific workflow management systems (SWFMSs). In contrast to business data, which is usually relational and stored in databases, scientific data is often hierarchically organized and collection oriented. Although several data models have been proposed for SWFMSs, none of them provides a formal data model with a set of well-defined operators. In this paper, we take a first step towards formalizing a collection-oriented data model, called collectional data model, to model hierarchical collection oriented scientific data, and a set of well-defined operators to manipulate and query such data. We then apply the collectional data model to VIEW, a dataflow-based scientific workflow composition framework, whose workflow constructs are extended to support collections. We implement our techniques and validate them by a case study in a biological simulation project.","PeriodicalId":170573,"journal":{"name":"2010 IEEE International Conference on Web Services","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Web Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWS.2010.93","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Modern scientific computations are usually data intensive, involving large-scale, heterogeneous and structured scientific datasets. Modeling, organizing, and processing scientific data have become key challenges for scientific workflow management systems (SWFMSs). In contrast to business data, which is usually relational and stored in databases, scientific data is often hierarchically organized and collection oriented. Although several data models have been proposed for SWFMSs, none of them provides a formal data model with a set of well-defined operators. In this paper, we take a first step towards formalizing a collection-oriented data model, called collectional data model, to model hierarchical collection oriented scientific data, and a set of well-defined operators to manipulate and query such data. We then apply the collectional data model to VIEW, a dataflow-based scientific workflow composition framework, whose workflow constructs are extended to support collections. We implement our techniques and validate them by a case study in a biological simulation project.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
科学工作流组合的集合数据模型
现代科学计算通常是数据密集型的,涉及大规模、异构和结构化的科学数据集。科学数据的建模、组织和处理已经成为科学工作流管理系统(SWFMSs)面临的主要挑战。业务数据通常是关系数据并存储在数据库中,与之相反,科学数据通常是分层组织的,面向集合。尽管已经为swfms提出了几种数据模型,但它们都没有提供具有一组定义良好的操作符的正式数据模型。在本文中,我们迈出了形式化面向集合的数据模型(称为集合数据模型)的第一步,以建模分层面向集合的科学数据,以及一组定义良好的操作符来操作和查询这些数据。然后,我们将集合数据模型应用于VIEW, VIEW是一个基于数据流的科学工作流组合框架,其工作流结构被扩展为支持集合。我们实现了我们的技术,并通过一个生物模拟项目的案例研究来验证它们。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Everett: Providing Branch-Isolation for a Data Evolution Service Message Correlation and Web Service Protocol Mining from Inaccurate Logs QoS Aware Semantic Web Service Composition Approach Considering Pre/Postconditions Benchmarking Vulnerability Detection Tools for Web Services Service Selection Based on Customer Rating of Quality of Service Attributes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1