A Generalization of Self-Improving Algorithms

Kai Jin, Siu-Wing Cheng, Man-Kwun Chiu, Man Ting Wong
{"title":"A Generalization of Self-Improving Algorithms","authors":"Kai Jin, Siu-Wing Cheng, Man-Kwun Chiu, Man Ting Wong","doi":"10.1145/3531227","DOIUrl":null,"url":null,"abstract":"Ailon et al. [SICOMP’11] proposed self-improving algorithms for sorting and Delaunay triangulation (DT) when the input instances x1, ... , xn follow some unknown product distribution. That is, xi is drawn independently from a fixed unknown distribution 𝒟i. After spending O(n1+ε) time in a learning phase, the subsequent expected running time is O((n + H)/ε), where H ∊ {HS,HDT}, and HS and HDT are the entropies of the distributions of the sorting and DT output, respectively. In this article, we allow dependence among the xi’s under the group product distribution. There is a hidden partition of [1, n] into groups; the xi’s in the kth group are fixed unknown functions of the same hidden variable uk; and the uk’s are drawn from an unknown product distribution. We describe self-improving algorithms for sorting and DT under this model when the functions that map uk to xi’s are well-behaved. After an O(poly(n))-time training phase, we achieve O(n + HS) and O(nα (n) + HDT) expected running times for sorting and DT, respectively, where α (⋅) is the inverse Ackermann function.","PeriodicalId":154047,"journal":{"name":"ACM Transactions on Algorithms (TALG)","volume":"104 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms (TALG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3531227","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Ailon et al. [SICOMP’11] proposed self-improving algorithms for sorting and Delaunay triangulation (DT) when the input instances x1, ... , xn follow some unknown product distribution. That is, xi is drawn independently from a fixed unknown distribution 𝒟i. After spending O(n1+ε) time in a learning phase, the subsequent expected running time is O((n + H)/ε), where H ∊ {HS,HDT}, and HS and HDT are the entropies of the distributions of the sorting and DT output, respectively. In this article, we allow dependence among the xi’s under the group product distribution. There is a hidden partition of [1, n] into groups; the xi’s in the kth group are fixed unknown functions of the same hidden variable uk; and the uk’s are drawn from an unknown product distribution. We describe self-improving algorithms for sorting and DT under this model when the functions that map uk to xi’s are well-behaved. After an O(poly(n))-time training phase, we achieve O(n + HS) and O(nα (n) + HDT) expected running times for sorting and DT, respectively, where α (⋅) is the inverse Ackermann function.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
自改进算法的推广
Ailon等人[SICOMP ' 11]提出了自改进的排序和Delaunay三角剖分(DT)算法,当输入实例x1,…, xn遵循一些未知的产品分布。也就是说,xi独立于一个固定的未知分布𝒟i。在一个学习阶段花费O(n1+ε)时间后,后续的期望运行时间为O((n + H)/ε),其中H = {HS,HDT}, HS和HDT分别为排序和DT输出的分布熵。在本文中,我们允许在群积分布下的xi之间的依赖。[1, n]存在一个隐藏的分组;KTH群中的xi是同一隐变量uk的固定未知函数;而英国则是从一个未知的产品分布中抽取的。当映射uk到xi的函数表现良好时,我们描述了在这个模型下排序和DT的自改进算法。经过O(poly(n))时间的训练阶段,我们分别实现了O(n + HS)和O(nα (n) + HDT)的排序和DT期望运行时间,其中α(⋅)为逆Ackermann函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Generic Techniques for Building Top-k Structures Deterministic Leader Election in Anonymous Radio Networks A Learned Approach to Design Compressed Rank/Select Data Structures k-apices of Minor-closed Graph Classes. II. Parameterized Algorithms Fully Dynamic (Δ +1)-Coloring in O(1) Update Time
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1