Optimizing IoT-based Human Activity Recognition on Extreme Edge Devices

A. Trotta, Federico Montori, Giacomo Vallasciani, L. Bononi, M. D. Felice
{"title":"Optimizing IoT-based Human Activity Recognition on Extreme Edge Devices","authors":"A. Trotta, Federico Montori, Giacomo Vallasciani, L. Bononi, M. D. Felice","doi":"10.1109/SMARTCOMP58114.2023.00023","DOIUrl":null,"url":null,"abstract":"Wearable Internet of Things (IoT) devices with inertial sensors can enable personalized and fine-grained Human Activity Recognition (HAR). While activity classification on the Extreme Edge (EE) can reduce latency and maximize user privacy, it must tackle the unique challenges posed by the constrained environment. Indeed, Deep Learning (DL) techniques may not be applicable, and data processing can become burdensome due to the lack of input systems. In this paper, we address those issues by proposing, implementing, and validating an EE-aware HAR system. Our system incorporates a feature selection mechanism to reduce the data dimensionality in input, and an unsupervised feature separation and classification technique based on Self-Organizing Maps (SOMs). We developed the system on an M5Stack IoT prototype board and implemented a new SOM library for the Arduino SDK. Experimental results on two HAR datasets show that our proposed solution is able to overcome other unsupervised approaches and achieve performance close to state-of-art DL techniques while generating a model small enough to fit the limited memory capabilities of EE devices.","PeriodicalId":163556,"journal":{"name":"2023 IEEE International Conference on Smart Computing (SMARTCOMP)","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Smart Computing (SMARTCOMP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SMARTCOMP58114.2023.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Wearable Internet of Things (IoT) devices with inertial sensors can enable personalized and fine-grained Human Activity Recognition (HAR). While activity classification on the Extreme Edge (EE) can reduce latency and maximize user privacy, it must tackle the unique challenges posed by the constrained environment. Indeed, Deep Learning (DL) techniques may not be applicable, and data processing can become burdensome due to the lack of input systems. In this paper, we address those issues by proposing, implementing, and validating an EE-aware HAR system. Our system incorporates a feature selection mechanism to reduce the data dimensionality in input, and an unsupervised feature separation and classification technique based on Self-Organizing Maps (SOMs). We developed the system on an M5Stack IoT prototype board and implemented a new SOM library for the Arduino SDK. Experimental results on two HAR datasets show that our proposed solution is able to overcome other unsupervised approaches and achieve performance close to state-of-art DL techniques while generating a model small enough to fit the limited memory capabilities of EE devices.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在极端边缘设备上优化基于物联网的人类活动识别
带有惯性传感器的可穿戴物联网(IoT)设备可以实现个性化和细粒度的人类活动识别(HAR)。虽然极限边缘(EE)上的活动分类可以减少延迟并最大限度地提高用户隐私,但它必须解决受限环境带来的独特挑战。事实上,深度学习(DL)技术可能并不适用,并且由于缺乏输入系统,数据处理可能会变得繁重。在本文中,我们通过提出、实现和验证一个ee感知的HAR系统来解决这些问题。我们的系统结合了特征选择机制来降低输入数据的维数,以及基于自组织映射(SOMs)的无监督特征分离和分类技术。我们在M5Stack物联网原型板上开发了该系统,并为Arduino SDK实现了一个新的SOM库。在两个HAR数据集上的实验结果表明,我们提出的解决方案能够克服其他无监督方法,并实现接近最先进的深度学习技术的性能,同时生成一个足够小的模型,以适应EE设备有限的内存容量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Teaching Humanoid Robots to Assist Humans for Collaborative Tasks Keynotes A Novel Context Aware Paths Recommendation Approach for the Cultural Heritage Enhancement Internet of Things in SPA Medicine: A General Framework to Improve User Treatments Nisshash: Design of An IoT-based Smart T-Shirt for Guided Breathing Exercises
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1