(WiP) LLTFI: Low-Level Tensor Fault Injector

Abraham Chan, U. Agarwal, K. Pattabiraman
{"title":"(WiP) LLTFI: Low-Level Tensor Fault Injector","authors":"Abraham Chan, U. Agarwal, K. Pattabiraman","doi":"10.1109/ISSREW53611.2021.00045","DOIUrl":null,"url":null,"abstract":"As machine learning (ML) has become more prevalent across many critical domains, so has the need to understand ML system resilience. While previous work has focused on building ML fault injectors at the application level, there has been little work enabling fault injection of ML applications at a lower level. We present LLTFI, a tool under development, which allows users to run fault injection experiments on C/C++, TensorFlow and PyTorch applications at the LLVM IR level. LLTFI provides users with greater fault injection granularity and a better ability to understand how faults manifest and propagate between programmed and ML components. We demonstrate how LLTFI can be applied to a ML application with an end-to-end example.","PeriodicalId":385392,"journal":{"name":"2021 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","volume":"439 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Symposium on Software Reliability Engineering Workshops (ISSREW)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISSREW53611.2021.00045","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

As machine learning (ML) has become more prevalent across many critical domains, so has the need to understand ML system resilience. While previous work has focused on building ML fault injectors at the application level, there has been little work enabling fault injection of ML applications at a lower level. We present LLTFI, a tool under development, which allows users to run fault injection experiments on C/C++, TensorFlow and PyTorch applications at the LLVM IR level. LLTFI provides users with greater fault injection granularity and a better ability to understand how faults manifest and propagate between programmed and ML components. We demonstrate how LLTFI can be applied to a ML application with an end-to-end example.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
(WiP) LLTFI:低级张量故障注入器
随着机器学习(ML)在许多关键领域变得越来越普遍,了解ML系统弹性的需求也越来越大。虽然以前的工作主要集中在应用程序级别构建ML故障注入器,但很少有工作在较低级别启用ML应用程序的故障注入。我们介绍了LLTFI,一个正在开发的工具,它允许用户在LLVM IR级别上在C/ c++, TensorFlow和PyTorch应用程序上运行故障注入实验。LLTFI为用户提供了更大的故障注入粒度,以及更好地理解故障如何在编程组件和ML组件之间显示和传播的能力。我们将通过端到端示例演示如何将LLTFI应用于ML应用程序。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An efficient dual ensemble software defect prediction method with neural network Genetic Algorithm-based Testing of Industrial Elevators under Passenger Uncertainty Predicting gray fault based on context graph in container-based cloud Aging and Rejuvenation Models of Load Changing Attacks in Micro-Grids Sensitivity Analysis of Software Rejuvenation Model with Markov Regenerative Process
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1