Parallel matching-based estimation - a case study on three different hardware architectures

Benjamin Ranft, Timo Schönwald, B. Kitt
{"title":"Parallel matching-based estimation - a case study on three different hardware architectures","authors":"Benjamin Ranft, Timo Schönwald, B. Kitt","doi":"10.1109/IVS.2011.5940521","DOIUrl":null,"url":null,"abstract":"Many advanced driver assistance systems (ADAS) and autonomous vehicles require 3D information available from (stereo) camera systems. The corresponding task of estimating disparity or optical flow is computationally demanding, so meeting real-time update rates at high image resolutions has proven to be challenging. Modern parallel hardware seems suitable for this task only if its processing power can be efficiently accessed by parallel software implementations. In this paper we present a case study comparing different hardware platforms by two variants of block matching-based estimation. These platforms include two x86-compatible multicore systems, a graphics processing unit (GPU) and a 64-core embedded design. We introduce relevant features of each architecture and describe their effects on the applied algorithms, parallelization approaches and implementations. Target platforms are evaluated concerning computational performance, energy efficiency and programmer productivity.","PeriodicalId":117811,"journal":{"name":"2011 IEEE Intelligent Vehicles Symposium (IV)","volume":"371 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"15","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Intelligent Vehicles Symposium (IV)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IVS.2011.5940521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 15

Abstract

Many advanced driver assistance systems (ADAS) and autonomous vehicles require 3D information available from (stereo) camera systems. The corresponding task of estimating disparity or optical flow is computationally demanding, so meeting real-time update rates at high image resolutions has proven to be challenging. Modern parallel hardware seems suitable for this task only if its processing power can be efficiently accessed by parallel software implementations. In this paper we present a case study comparing different hardware platforms by two variants of block matching-based estimation. These platforms include two x86-compatible multicore systems, a graphics processing unit (GPU) and a 64-core embedded design. We introduce relevant features of each architecture and describe their effects on the applied algorithms, parallelization approaches and implementations. Target platforms are evaluated concerning computational performance, energy efficiency and programmer productivity.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于并行匹配的估计——基于三种不同硬件架构的案例研究
许多高级驾驶辅助系统(ADAS)和自动驾驶汽车需要从(立体)摄像头系统获得3D信息。估计视差或光流的相应任务在计算上要求很高,因此在高图像分辨率下满足实时更新速率已被证明是具有挑战性的。现代并行硬件似乎只有在其处理能力可以被并行软件实现有效地访问时才适合这项任务。在本文中,我们给出了一个案例研究,通过两种基于块匹配的估计变体来比较不同的硬件平台。这些平台包括两个兼容x86的多核系统,一个图形处理单元(GPU)和一个64核嵌入式设计。我们介绍了每种体系结构的相关特性,并描述了它们对应用算法、并行化方法和实现的影响。评估目标平台的计算性能、能源效率和程序员生产力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent headlight control using learning-based approaches Piecewise affine state feedback controller for lane departure avoidance U-V-Disparity based Obstacle Detection with 3D Camera and steerable filter Invariant set based vehicle handling improvement at tire saturation using fuzzy output feedback Lane change intent prediction for driver assistance: On-road design and evaluation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1