Class Incremental Learning for Video Action Classification

Jiawei Ma, Xiaoyu Tao, Jianxing Ma, Xiaopeng Hong, Yihong Gong
{"title":"Class Incremental Learning for Video Action Classification","authors":"Jiawei Ma, Xiaoyu Tao, Jianxing Ma, Xiaopeng Hong, Yihong Gong","doi":"10.1109/ICIP42928.2021.9506788","DOIUrl":null,"url":null,"abstract":"Class Incremental Learning (CIL) is a hot topic in machine learning for CNN models to learn new classes incrementally. However, most of the CIL studies are for image classification and object recognition tasks and few CIL studies are available for video action classification. To mitigate this problem, in this paper, we present a new Grow When Required network (GWR) based video CIL framework for action classification. GWR learns knowledge incrementally by modeling the manifold of video frames for each encountered action class in feature space. We also introduce a Knowledge Consolidation (KC) method to separate the feature manifolds of old class and new class and introduce an associative matrix for label prediction. Experimental results on KTH and Weizmann demonstrate the effectiveness of the framework.","PeriodicalId":314429,"journal":{"name":"2021 IEEE International Conference on Image Processing (ICIP)","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Conference on Image Processing (ICIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIP42928.2021.9506788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

Abstract

Class Incremental Learning (CIL) is a hot topic in machine learning for CNN models to learn new classes incrementally. However, most of the CIL studies are for image classification and object recognition tasks and few CIL studies are available for video action classification. To mitigate this problem, in this paper, we present a new Grow When Required network (GWR) based video CIL framework for action classification. GWR learns knowledge incrementally by modeling the manifold of video frames for each encountered action class in feature space. We also introduce a Knowledge Consolidation (KC) method to separate the feature manifolds of old class and new class and introduce an associative matrix for label prediction. Experimental results on KTH and Weizmann demonstrate the effectiveness of the framework.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
视频动作分类的类增量学习
类增量学习(Class Incremental Learning, CIL)是CNN模型增量学习新类的一个热点。然而,大多数的CIL研究都是针对图像分类和目标识别任务,很少有针对视频动作分类的CIL研究。为了解决这一问题,本文提出了一种新的基于GWR网络的视频CIL动作分类框架。GWR通过在特征空间中为每个遇到的动作类建模视频帧的流形来增量地学习知识。引入知识整合(Knowledge Consolidation, KC)方法分离新旧类的特征流形,并引入关联矩阵进行标签预测。KTH和Weizmann的实验结果证明了该框架的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Deep Color Mismatch Correction In Stereoscopic 3d Images Weakly-Supervised Multiple Object Tracking Via A Masked Center Point Warping Loss A Parameter Efficient Multi-Scale Capsule Network Few Shot Learning For Infra-Red Object Recognition Using Analytically Designed Low Level Filters For Data Representation An Enhanced Reference Structure For Reference Picture Resampling (RPR) In VVC
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1