PROPERTIES OF THE EQUATION OF HEAT CONDUCTION WITH DISSIPATION SOLUTIONS

V. Horodets’kyi, O. Martynyuk
{"title":"PROPERTIES OF THE EQUATION OF HEAT CONDUCTION WITH DISSIPATION SOLUTIONS","authors":"V. Horodets’kyi, O. Martynyuk","doi":"10.31861/bmj2022.02.06","DOIUrl":null,"url":null,"abstract":"This paper investigates the properties of the solutions of the equation of heat conduction with dissipation, which is associated with a harmonic oscillator - the operator $-d^2/dx^2 + x^2$, $x\\in \\mathbb{R}$ (non-negative and self-adjoint in $L_2(\\mathbb{R})$). An explicit form of the function is given, which is analogous to the fundamental solution of the Cauchy problem for the heat conduction equation. A formula that describes all infinitely differentiable (with respect to the variable $x$) solutions of such an equation was found, well-posedness of the Cauchy problem for the heat conduction equation with dissipation with the initial function, which is an element of the space of generalized functions $(S_{1/2}^{1/2})'$, is established. It is established that $(S_{1/2}^{1/2})'$ is the \"maximum\" space of initial data of the Cauchy problem, for which the solutions are infinite functions differentiable by spatial variable. The main means of research are formal Hermite series, which are identified with linear continuous functionals defined on $S_{1/2}^{1/2}$.","PeriodicalId":196726,"journal":{"name":"Bukovinian Mathematical Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bukovinian Mathematical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31861/bmj2022.02.06","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the properties of the solutions of the equation of heat conduction with dissipation, which is associated with a harmonic oscillator - the operator $-d^2/dx^2 + x^2$, $x\in \mathbb{R}$ (non-negative and self-adjoint in $L_2(\mathbb{R})$). An explicit form of the function is given, which is analogous to the fundamental solution of the Cauchy problem for the heat conduction equation. A formula that describes all infinitely differentiable (with respect to the variable $x$) solutions of such an equation was found, well-posedness of the Cauchy problem for the heat conduction equation with dissipation with the initial function, which is an element of the space of generalized functions $(S_{1/2}^{1/2})'$, is established. It is established that $(S_{1/2}^{1/2})'$ is the "maximum" space of initial data of the Cauchy problem, for which the solutions are infinite functions differentiable by spatial variable. The main means of research are formal Hermite series, which are identified with linear continuous functionals defined on $S_{1/2}^{1/2}$.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
带耗散解的热传导方程的性质
本文研究了谐振子-算子$ d^2/dx^2 + x^2$, $x\in \mathbb{R}$ ($L_2(\mathbb{R})$非负自伴随)的带耗散热传导方程解的性质。给出了函数的显式形式,它类似于热传导方程的柯西问题的基本解。得到了一个描述这类方程的所有无穷可微解(关于变量$x$)的公式,建立了具有耗散的热传导方程的柯西问题的适定性,其初始函数是广义函数$(S_{1/2}^{1/2})'$空间的一个元素。建立了$(S_{1/2}^{1/2})'$是柯西问题初始数据的“最大”空间,其解是可被空间变量微导的无穷函数。研究的主要手段是用定义在$S_{1/2}^{1/2}$上的线性连续泛函来识别的形式Hermite级数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
INITIAL-BOUNDARY VALUE PROBLEM FOR HIGHER-ORDERS NONLINEAR PARABOLIC EQUATIONS WITH VARIABLE EXPONENTS OF THE NONLINEARITY IN UNBOUNDED DOMAINS WITHOUT CONDITIONS AT INFINITY UNIQUENESS THEOREMS FOR ALMOST PERIODIC OBJECTS SEMITOPOLOGICAL MODULES Differential equations for moments and the generating function of number of transformations for branching process with continuous time and migration WIMAN’S TYPE INEQUALITY FOR SOME DOUBLE POWER SERIES
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1