Subjectivity Classification of Filipino Text with Features Based on Term Frequency -- Inverse Document Frequency

Ralph Vincent J. Regalado, Jenina L. Chua, J. L. Co, Thomas James Z. Tiam-Lee
{"title":"Subjectivity Classification of Filipino Text with Features Based on Term Frequency -- Inverse Document Frequency","authors":"Ralph Vincent J. Regalado, Jenina L. Chua, J. L. Co, Thomas James Z. Tiam-Lee","doi":"10.1109/IALP.2013.40","DOIUrl":null,"url":null,"abstract":"Subjectivity classification classifies a given document if it contains subjective information or not, or identifies which portions of the document are subjective. This research reports a machine learning approach on document-level and sentence-level subjectivity classification of Filipino texts using existing machine learning algorithms such as C4.5, Naïve Bayes, k-Nearest Neighbor, and Support Vector Machine. For the document-level classification, result shows that Support Vector Machines gave the best result with 95.06% accuracy. While for the sentence-level classification, Naïve Baves gave the best result with 58.75% accuracy.","PeriodicalId":413833,"journal":{"name":"2013 International Conference on Asian Language Processing","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 International Conference on Asian Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IALP.2013.40","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Subjectivity classification classifies a given document if it contains subjective information or not, or identifies which portions of the document are subjective. This research reports a machine learning approach on document-level and sentence-level subjectivity classification of Filipino texts using existing machine learning algorithms such as C4.5, Naïve Bayes, k-Nearest Neighbor, and Support Vector Machine. For the document-level classification, result shows that Support Vector Machines gave the best result with 95.06% accuracy. While for the sentence-level classification, Naïve Baves gave the best result with 58.75% accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于词频特征的菲文文本主体性分类——逆文献频率
主观性分类对给定文档是否包含主观信息进行分类,或者识别文档的哪些部分是主观的。本研究报告了一种机器学习方法,使用现有的机器学习算法,如C4.5, Naïve贝叶斯,k-最近邻和支持向量机,对菲律宾文本进行文档级和句子级主观性分类。对于文档级别的分类,结果表明支持向量机给出了最好的结果,准确率为95.06%。而对于句子级分类,Naïve Baves给出了最好的结果,准确率为58.75%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Judgment, Extraction and Selective Restriction of Chinese Eventive Verb Categorization and Identification of Fragments with Shi Plus Punctuation Feature Abstraction for Lightweight and Accurate Chinese Word Segmentation The Comparative Research on the Segmentation Strategies of Tibetan Bounded-Variant Forms An Empirical Evaluation of Dimensionality Reduction Using Latent Semantic Analysis on Hindi Text
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1