Automatic shadow enhancement in intra vascular ultrasound (IVUS) images

Maryam Basij, A. Taki, M. Yazdchi
{"title":"Automatic shadow enhancement in intra vascular ultrasound (IVUS) images","authors":"Maryam Basij, A. Taki, M. Yazdchi","doi":"10.1109/MECBME.2014.6783266","DOIUrl":null,"url":null,"abstract":"The goal of image enhancement is improving the interpretability or perception of information in images for human viewers. This paper describes, an automated algorithm for shadow region detection and enhancement in intravascular ultrasound (IVUS) images using an adaptive threshold method for threshold selection, contour approach for border detection and image enhancement algorithm including histogram analysis for the shadow regions improvement. As shadow appears behind the calcification plaque, it makes it difficult or impossible for the dark region to process automatically around these regions. The acoustic shadow usually follows the hard plaque in IVUS images and it can distinguish calcification regions from other bright regions. Therefore we propose to use Otsu Threshold for calcification plaque segmentation and the Active contours without edge method for shadow region separation of the image and histogram matching for shadow enhancing. Results show that the proposed method efficiently detected shadow regions even in complicated images.","PeriodicalId":384055,"journal":{"name":"2nd Middle East Conference on Biomedical Engineering","volume":"95 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2nd Middle East Conference on Biomedical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MECBME.2014.6783266","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

The goal of image enhancement is improving the interpretability or perception of information in images for human viewers. This paper describes, an automated algorithm for shadow region detection and enhancement in intravascular ultrasound (IVUS) images using an adaptive threshold method for threshold selection, contour approach for border detection and image enhancement algorithm including histogram analysis for the shadow regions improvement. As shadow appears behind the calcification plaque, it makes it difficult or impossible for the dark region to process automatically around these regions. The acoustic shadow usually follows the hard plaque in IVUS images and it can distinguish calcification regions from other bright regions. Therefore we propose to use Otsu Threshold for calcification plaque segmentation and the Active contours without edge method for shadow region separation of the image and histogram matching for shadow enhancing. Results show that the proposed method efficiently detected shadow regions even in complicated images.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
血管内超声(IVUS)图像的自动阴影增强
图像增强的目标是提高人类观众对图像信息的可解释性或感知能力。本文介绍了一种用于血管内超声(IVUS)图像中阴影区域检测和增强的自动算法,该算法使用自适应阈值法进行阈值选择,使用轮廓法进行边界检测,以及使用直方图分析进行阴影区域改进的图像增强算法。由于钙化斑块后面出现了阴影,这使得暗区很难或不可能在这些区域周围自动处理。在IVUS图像中,声影通常跟随硬斑块,它可以区分钙化区域和其他明亮区域。因此,我们提出用Otsu阈值分割钙化斑块,用无边缘的活动轮廓法分割图像的阴影区域,用直方图匹配增强图像的阴影。实验结果表明,该方法可以有效地检测复杂图像中的阴影区域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Human microRNAs targeting hepatitis C virus ECG noise reduction using empirical mode decomposition based on combination of instantaneous half period and soft-thresholding MFC peak based segmentation for continuous Arabic audio signal A model for ultrasound contrast agent in a phantom vessel Performance of Optical Flow tracking approaches for cardiac motion analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1