A Heterogeneous Parallel Framework for Domain-Specific Languages

Kevin J. Brown, Arvind K. Sujeeth, HyoukJoong Lee, Tiark Rompf, Hassan Chafi, Martin Odersky, K. Olukotun
{"title":"A Heterogeneous Parallel Framework for Domain-Specific Languages","authors":"Kevin J. Brown, Arvind K. Sujeeth, HyoukJoong Lee, Tiark Rompf, Hassan Chafi, Martin Odersky, K. Olukotun","doi":"10.1109/PACT.2011.15","DOIUrl":null,"url":null,"abstract":"Computing systems are becoming increasingly parallel and heterogeneous, and therefore new applications must be capable of exploiting parallelism in order to continue achieving high performance. However, targeting these emerging devices often requires using multiple disparate programming models and making decisions that can limit forward scalability. In previous work we proposed the use of domain-specific languages (DSLs) to provide high-level abstractions that enable transformations to high performance parallel code without degrading programmer productivity. In this paper we present a new end-to-end system for building, compiling, and executing DSL applications on parallel heterogeneous hardware, the Delite Compiler Framework and Runtime. The framework lifts embedded DSL applications to an intermediate representation (IR), performs generic, parallel, and domain-specific optimizations, and generates an execution graph that targets multiple heterogeneous hardware devices. Finally we present results comparing the performance of several machine learning applications written in OptiML, a DSL for machine learning that utilizes Delite, to C++ and MATLAB implementations. We find that the implicitly parallel OptiML applications achieve single-threaded performance comparable to C++ and outperform explicitly parallel MATLAB in nearly all cases.","PeriodicalId":106423,"journal":{"name":"2011 International Conference on Parallel Architectures and Compilation Techniques","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"201","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 International Conference on Parallel Architectures and Compilation Techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PACT.2011.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 201

Abstract

Computing systems are becoming increasingly parallel and heterogeneous, and therefore new applications must be capable of exploiting parallelism in order to continue achieving high performance. However, targeting these emerging devices often requires using multiple disparate programming models and making decisions that can limit forward scalability. In previous work we proposed the use of domain-specific languages (DSLs) to provide high-level abstractions that enable transformations to high performance parallel code without degrading programmer productivity. In this paper we present a new end-to-end system for building, compiling, and executing DSL applications on parallel heterogeneous hardware, the Delite Compiler Framework and Runtime. The framework lifts embedded DSL applications to an intermediate representation (IR), performs generic, parallel, and domain-specific optimizations, and generates an execution graph that targets multiple heterogeneous hardware devices. Finally we present results comparing the performance of several machine learning applications written in OptiML, a DSL for machine learning that utilizes Delite, to C++ and MATLAB implementations. We find that the implicitly parallel OptiML applications achieve single-threaded performance comparable to C++ and outperform explicitly parallel MATLAB in nearly all cases.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
面向领域特定语言的异构并行框架
计算系统正变得越来越并行和异构,因此新的应用程序必须能够利用并行性,以便继续实现高性能。然而,针对这些新兴设备通常需要使用多个不同的编程模型,并做出可能限制向前可伸缩性的决策。在之前的工作中,我们建议使用领域特定语言(dsl)来提供高级抽象,使转换成为高性能并行代码而不会降低程序员的工作效率。在本文中,我们提出了一个新的端到端系统,用于在并行异构硬件上构建、编译和执行DSL应用程序,即Delite编译器框架和运行时。该框架将嵌入式DSL应用程序提升到中间表示(IR),执行通用的、并行的和特定于领域的优化,并生成针对多个异构硬件设备的执行图。最后,我们给出了用OptiML(一种利用Delite的机器学习DSL)编写的几个机器学习应用程序与c++和MATLAB实现的性能比较结果。我们发现隐式并行的OptiML应用程序实现了与c++相当的单线程性能,并且在几乎所有情况下都优于显式并行的MATLAB。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Modeling and Performance Evaluation of TSO-Preserving Binary Optimization An Alternative Memory Access Scheduling in Manycore Accelerators DiDi: Mitigating the Performance Impact of TLB Shootdowns Using a Shared TLB Directory Compiling Dynamic Data Structures in Python to Enable the Use of Multi-core and Many-core Libraries Enhancing Data Locality for Dynamic Simulations through Asynchronous Data Transformations and Adaptive Control
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1